Характерные признаки дефекта тормозной системы и методы их устранения. Тормоза воздушные


Как работает самолетный тормоз | Как это сделано

Сегодня мы смотрим самолётный тормоз.

Тормоза разных самолётов очень похожи друг на друга и в части конструкции отличаются не сильно — в основном, способом присоединения к оси.Мы изучим тормоз от Airbus-320.

Тормоз может поставляться в разной транспортировочной упаковке; например, вот в такой:

Весит такая штука порядка 100 кг, из которых примерно 70 кг — сам тормоз.

Вот он во всей своей красе:

Как видно, тормоз — дисковый.Конкретно эта модель содержит четыре подвижных и пять неподвижных дисков.

Диски — карбоновые и имеют облицованные металлом прорези для соединения со шлицами колеса.

Перед установкой колесА диски выравниваются, и колесо своими шлицами надевается в эти пазы.

На колесе со внутренней стороны виден блестящий теплозащитный экран.При торможении самолёта тормоза могут нагреваться до 300 градусов и более, и экран помогает снизить нагрев диска колеса и шины.

Охлаждаются тормоза через отверстия в колёсных дисках либо естественным путём:

, либо на колесо может устанавливаться крышка с вентилятором для принудительного охлаждения:

Осевой вентилятор с приводом от электромотора внутри оси засасывает воздух снаружи

и прогоняет его через отверстия в колёсном диске далее, через тормозные диски, в сторону амортстойки.

Гидравлическая часть тормоза представлена корпусом гидроцилиндров.Гидроцилиндров тут 14 — по семь на основную и альтернативную системы торможения, расположенных через один.

Вот тут хорошо видно, что системы работают не одновременно:(один поршень не задействован, другой прижимает диски)

Верхние гидроцилиндры имеют штуцеры для стравливания воздушных пробок после установки тормоза:

Гидрожидкость к коллекторам основной и альтернативной систем подводится через быстроразъёмные соединения:

Это, без преувеличения, великое, изобретение позволяет отсоединить гидравлические шланги за пару секунд.

Оно не контрится, а просто надо повернуть разъём шланга, вывести из зацепления с пином на тормозе, и отсоединить.

Тормоз имеет два индикатора износа дисков — спереди и сзади.

Эти штыри (пины) присоединены торчат из прорези в корпусе.Когда тормоз износится до необходимости замены, выступание штырей за плоскость корпуса будет нулевым:

Естественно, проверять износ надо со сжатыми дисками. Обычно это делается со включенным стояночным тормозом.Пины тут разные, потому что сфотканы тормоза разных производителей.

После снятия тормоза по износу он направляется на переборку. Там его чистят, контролируют, и устанавливают новые диски.

Внизу тормоз имеет датчик температуры:

Крепятся тормоза на разных самолётах по-разному.На 737 Classic тормоз прикручивался болтами. Кажется, 12-ю. Каждый болт нужно было затягивать в два приёма — сначала тянуть один моментом за болты (не гайки) накрест, а потом — бОльшим моментом по кругу. То ещё удовольствие :)На 737 NG тормоз вообще роскошный. Он не прикручивается ничем :) — держится только за счёт прижатия колесом, а момент воспринимает здоровенный прямоугольный брус, торчащий из амортстойки. Тормоз при замене просто надевается на него.Тормоз на A320 находится на промежуточной стадии эволюции :) — он прикручивается всего тремя гайками.

А момент от торможения передаётся на стойку через эти три болта, плюс девять штырей, на которые тормоз просто надевается при установке.Вот на фотке как раз видны две нижние гайки и между ними один из этих девяти штырей.

Верхняя крепёжная гайка (показана стрелкой)

расположена неудобно, как раз напротив штока амортстойки.Поэтому для замены тормоза нужно иметь динамометрический ключ с головкой и удлинителем, попадающие ровно в этот небольшой зазор между стойкой и корпусом тормоза :)

И под конец, как обычно, напугаю вас страшненьким :)Вот так выглядит нижняя часть амортстойки сзади:

Наблюдаем на переднем плане два гидравлических шланга по бокам — к левому и правому тормозам;между ними — кабель с проводами от системы измерения температуры тормозов, питания вентиляторов и датчиков тахометров колёс (тоже находятся внутри оси стойки).

Хочется сразу ответить и предупредить вопросы.Почему всё такое грязное.Шасси ВСЕГДА очень грязные.Эта мелкодисперсная пыль от износа карбоновых дисков вся летит сюда.Самолёт тормозит свои 60 тонн от 230 км/ч до нуля за минуту — что вы хотите?Налипает и просто пыль.Плюс сюда выдувает смазку. И иногда немного гидрожидкости.Так — на всех самолётах. Любых компаний.Я понимаю, что разбиваю ваши мечты о белоснежных лайнерах, но если вы хотите знать, как устроена матчасть на самом деле — то вот так она и устроена.Мир таков.

Те, кто не умер от правды жизни, заканчивают обучение.Амортстойка снизу:

Посредине картины видна полусфера — это место установки подъёмника при замене колёс и тормозов.Выше — штуцер заправки амортстойки азотом (это нижний, есть ещё выше на стойке).

Буквой 1 обозначен BTMU (Brake Temperature Monitoring Unit = Блок Отслеживания Температуры тормозов).Он связан через разъёмы с датчиками температуры в тормозах,

и передаёт сигнал куда-то дальше, в недра.

В итоге темепратурка выплывает на нижнем, системном, дисплее ECAM.

Заметим, что температура тормозов отсчитывается относительно температуры окружающей среды.

Про торможение передних колёс.Основные тормозятся при уборке своими тормозами подачей гидрожидкости.Передние не тормозятся никак.Раньше на старых Airbus устанавливались в передней нише шасси на потолке натянутые ленты, о которые тормозились колёса после уборки; сейчас такого нет.На Boeing-737 на потолке передней ниши есть текстолитовые накладки для торможения колёс. Пожалуй, на этом про тормоза я закончу.

Источник

kak-eto-sdelano.ru

О тормозных возможностях летательного аппарата. Тормоза самолета и тормозной парашют.

Здравствуйте, уважаемые читатели!

Посадка самолета А340.

Сегодня немного поговорим о такой важной штуке, как тормоза в авиации. Всем известно, что посадочные скорости современных самолетов достаточно высоки. В большей степени это относится к военной авиации, но и гражданская от нее не очень-то отстает. Однако, чем для более высоких скоростей полета предназначен самолет, тем труднее ему уверенно чувствовать себя на малых посадочных.

«Единство и борьба противоположностей» имеет место в явном виде :-). Планер, к примеру, типичного истребителя-перехватчика на малых скоростях, которые как раз и целесообразны на посадке, летает, мягко говоря, не очень охотно. Его стихия совсем другая, и большая скорость там обязательно присутствует :-).

Но ведь сколько не летай, садиться (а значит и замедляться) все равно надо. Различные конструкторские ухищрения типа изменяемой стреловидности, мощной взлетно-посадочной механизации и т.п. и т.д. позволяют в некоторой степени решить проблему, но всему есть предел. Скорость на посадке остается немаленькой.

А отсюда напрямую проистекают такие неприятности, как большая посадочная дистанция (или длина пробега) летательного аппарата и немалая нагрузка на элементы посадочных устройств или, говоря простым языком, колеса (их шины или «пневматики»).

ВПП бесконечной длины никто строить, понятно, не заинтересован. Кроме того, сама посадка, как и любой другой элемент полета, должна быть, конечно, достаточно безопасной. Поэтому вполне понятно, что любой самолет в соответствии со своими данными и предназначением нуждается в эффективных и безопасных средствах торможения.

Еще надо заметить (как бы в скобках :-)), что практически любой летательный аппарат перед взлетом и после посадки может (и, видимо, должен) осуществлять перемещения по летному полю (руление), и для правильной организации этого процесса без надежных тормозов не обойтись.

В чем, собственно, физическая суть торможения? Любой предмет, находящийся в движении, в результате этого самого движения обладает кинетической энергией. Ее фундаментальная формула K = MV2/2 . Самолет, сам по себе обладающий немалой массой М, совершив посадку со скоростью V (опять же совсем немаленькой, да по формуле еще и в квадрате), в итоге обладает просто таки огромным запасом кинетической энергии К.

Для остановки ее необходимо рассеять (или преобразовать в другие виды энергии, с движением самолета не связанные). Все способы торможения на это как раз и направлены.

В современной авиации широко известны три способа торможения: реверс тяги двигателя, тормозной парашют и, наконец, всем известные колесные тормоза самолета. Как о вспомогательных можно еще говорить о тормозных щитках и интерцепторах.

В первых двух способах кинетическая энергия тратится на преодоление аэродинамического сопротивления, а в третьем на преодоление трения и в итоге преобразуется в тепловую, которая рассеивается в атмосфере (колеса вместе с элементами системы торможения нагреваются и затем остывают).

О реверсе мы с вами уже говорили ранее. Теперь коснемся остальных способов торможения летательных аппаратов.

Колесные тормоза самолета. Они являются по сути своей аналогами тормозов автомобильных и от них же в свое время и произошли. Ничего супернового в этом плане здесь не изобрели. Кинетическая энергия летательного аппарата в этом случае расходуется на борьбу с трением и при этом переходит в тепло.

В авиации существует три вида колесных тормозных устройств. Первые два — колодочные и камерные тормоза. В настоящее время на вновь создаваемых самолетах они уже не применяются (где-то, примерно, с пятидесятых годов), за исключением быть может легких самолетов (мне, однако, такие случаи неизвестны :-)). Но упомянуть о них, я думаю, все же стоит.

Пример автомобильных колодочных тормозов (внутренне расположение колодок). У авиационных принцип тот же.

В колодочных тормозах главной рабочей деталью является колодка, изготавливаемая чаще всего из легкого сплава и несущая на одной из своих поверхностей тормозную накладку, которая, в свою очередь, сделана из специального достаточно мягкого материала с повышенным коэффициентом трения. Таких колодок может быть несколько.

Под воздействием силового механизма (он обычно распорного типа гидравлический, либо пневматический, хотя на ранних самолетах был и простой механический привод) колодки своими накладками при задействовании тормоза прижимаются к поверхности (внутренней) тормозного барабана (или тормозной рубашки), неподвижно закрепленного на внутренней поверхности корпуса колеса и поэтому вращающимся вместе с ним. Тормозная рубашка изготавливалась обычно из малоуглеродистой стали.

При выключении тормоза колодки возвращаются в исходное положение под действием пружинного механизма, смонтированного вместе с силовым. Вобщем достаточно похоже на автомобильный или мотоциклетный тормоз часто называемый в просторечии барабанным (кто в курсе:-)).

Такого рода тормоза самолета применялись где-то начиная с 20-х годов. Они были (и есть :-)) относительно малоэффективны. Неэнергоемкие, с небольшим тормозным моментом (особенно без гидро- или пневматического усиления) и неравномерным износом колодок.

Камерный тормоз. 1 - корпус тормоза, 2 - тормозные накладки, 3 - камера, 4 - пружина.

В тридцатых годах появились камерные тормоза. Камера там действительно имеется, она резиновая и расположена внутри цилиндрического барабана (та же тормозная рубашка), закрепленного в корпусе колеса. На наружной поверхности камеры установлены тормозные накладки (пластины) из фрикционного материала.

При включении тормоза внутрь камеры подается воздух или жидкость (значительно реже) под давлением. Камера увеличивается в объеме и тормозные накладки прижимаются к барабану. Далее все понятно :-). Такого рода тормоза достаточно компактны и просты как в изготовлении, так и в эксплуатации, равномерно передают тормозное усилие и имеют небольшую массу.

Однако, быстродействие их невелико, расход воздуха немалый, а эластичность резиновой камеры – величина непостоянная, особенно при низких температурах наружного воздуха.

Тормозной момент и энергоемкость двух этих конструкций тормозов самолета относительно невелики. Правда и посадочные скорости, да, кстати сказать, и массы самих летательных аппаратов, на которых они применялись не такие уж большие по сравнению с современными типами.

Надо сказать, что применение более мощных тормозов на самолетах, создаваемых до 50-х годов в определенном смысле ограничивалось еще и схемой шасси. Оно было в большинстве своем трехопорное с хвостовым колесом, что в принципе грозило переворачиванием самолета на нос при резком торможении.

Как пример применения колодочных тормозов можно назвать послевоенный учебно-тренировочный самолет ЯК-18. Камерные тормоза применены на известных истребителях ЛА-5 и ЛА-7. А вот на спортивном ЯК-55 стоят уже совсем другие тормоза. О них и поговорим далее.

Учебно-тренировочный самолет ЯК-18.

Истребитель ЛА-7.

Спортивный самолет ЯК-55М. Виден дисковый тормоз колеса.

Итак, на современных самолетах применяется третий тип авиационных тормозов – дисковые. Количество дисков в них может быть различным. Тормоза с одним диском применяются в основном на легких самолетах. Конструкция их в принципе идентична дисковым автомобильным или мотоциклетным тормозам. То есть имеется один тормозной диск, неподвижно закрепленный на корпусе колеса и вращающийся вместе с ним.

Анимация работы колодочного и дискового тормоза.

По обе стороны диска в специальном устройстве, называемом тормозной суппорт (встречается еще название тормозная машинка), попарно расположены тормозные пластины (иногда их называют колодками).

Эти пластины при включении тормоза одновременно прижимаются к диску при помощи гидравлически приводимых толкателей (поршней), что, естественно, вызывает возникновение тормозного момента.

Однодисковый тормоз колеса легкого летательного аппарата.

Однодисковые тормоза легкого летательного аппарата.

Однако, наиболее распространены в наше время (и наиболее эффективны) многодисковые тормоза самолета. Такие устройства сейчас стоят практически на всех современных гражданских лайнерах и военных самолетах. Конструкций их существует множество, но принцип действия у всех одинаковы. Они похожи на обычную фрикционную муфту сцепления.

Многодисковый тормоз в основе своей представляет из себя пакет, состоящий из нескольких тормозных дисков. Часть из них вращаются вместе с колесом, часть неподвижны в плоскости вращения. Они расположены друг за другом через один. Вращающиеся диски имеют специальные выступы, а в корпусе колеса сделаны прорези для этих выступов (для совместного вращения).

Все диски имеют возможность в некоторой степени перемещаться в осевом направлении (можно сказать на оси колеса вдоль нее), и при выключенном тормозе между ними имеется зазор. При этом колесо (вместе с вращающимися дисками) имеет возможность свободно поворачиваться на своей оси.

Многодисковый тормоз самолета McDonnell Douglas MD-11.

Многодисковый тормоз самолета McDonnell Douglas MD-11.

Тормоз самолета McDonnell Douglas MD-11.

Самолет McDonnell Douglas MD-11.

При введении тормоза в действие, специальные поршни с гидравлическим (или пневматическим) управлением сжимают все эти диски в один пакет. Из-за больших сил трения, возникающих при сжатии вращающихся и невращающихся дисков, возникает тормозной момент, что нам, собственно, и нужно :-). При отключении тормоза пружинные механизмы возвращают поршни в исходное положение.

Тормозные диски бывают как металлические (малоуглеродистая сталь), так и биметаллические. Делают их также с применением порошковой металлургии с использованием чугуна и бронзы. Кроме того в последнее время используются различные синтетические материалы и ткани с применением специальной термообработки, углеводородное волокно и различные смолы.

Современные карбоновые тормоза фирмы Goodrich.

Карбоновый блок электрического тормоза фирмы Goodrich (ориентировочнно для Boeing-787).

Карбоновые тормозные диски массово применяются на лайнерах Airbus, Boeing и других фирм уже около 20 лет. Все это делается к тому, чтобы обеспечить максимальный коэффициент трения в тормозах самолета, при этом до минимума уменьшая их вес.

Карбоновые electric brake фирмы Messier-Bugatti-Dowty.

В последние несколько лет разработаны, испытаны и готовятся к применению на перспективных самолетах (типа Boeing 737NG, 787, Airbus 350XWB), а также на других по желанию фирмы-эксплуатанта (и возможностям самолета, конечно :-)) тормоза, в которых вместо гидравлического управления используется электро-механическое (так называемые electric brake). Блок тормозных дисков у них карбоновый. Главные разработчики этого направления известные «колесные» фирмы Messier-Bugatti-Dowty и Goodrich.

Принцип работы авиационных electric brake.

При использовании такого тормоза информация о нажатии пилотом на тормозную педаль передается компьютером в электронный блок управления, который преобразует эти команды в электрические сигналы, передаваемые на электродвигатель, чье вращение через редуктор превращается в механическое перемещение карбоновых тормозных дисков.

Дисковые тормоза создают большое тормозное усилие и очень энергоемки. Однако, именно из-за последнего их большим недостатком является то, что они при неоднократном торможении довольно быстро нагреваются и своевременный отвод тепла от них затруднен. Поток тепла может быть очень большим, и оно отрицательно влияет на элементы тормозного механизма, на корпус колеса и на его резиновую шину (пневматик).

Следующие два видеоролика на эту тему. Первый показывает испытания тормоза самолета А380-800. Второй показывает возможность разрушения пневматика из-за перегрева. Колесо, правда, автомобильное, но для нашей темы все это актуально.

В связи с этим для определения возможно произошедшего перегрева колеса существует такая интересная фишка, как термосвидетель. Этим странным словом называется специальная легкоплавкая пробка, которая размещается в корпусе колеса, обычно в районе обода.

Термосвидетелей чаще всего три. Они размещаются под 120º друг относительно друга в корпусе колеса и могут быть легко осмотрены. Обычно допустимая температура нагрева колеса составляет что-то около 110 градусов, температура плавления выступающей части (головки) термосвидетеля примерно 125 градусов, а его полное выплавление наступает примерно при 140 градусах.

В случае, если один из них (или же два и даже три) оказываются выплавленными, то выполняется специальный (для каждого случая) комплекс работ, как смотровых, так и работ по замене определенных частей тормозного механизма или полностью всего узла, корпуса колеса или пневматика.

Разрушение пневматиков и тормозов основной стойки шасси.

Последствия неблагоприятных условий для работы посадочных устройств.

Для защиты колеса могут также применяться специальные тепловые экраны, дополнительное охлаждение воздухом, забираемым от компрессора ТРД или же автоматически распыляемая на диски вода.

То есть в этом плане может даже присутствовать целая самостоятельная система контроля температуры колес (и, кстати, не только температуры :-)), автоматически применяющая защитные меры и так же автоматически фиксирующая превышение предельной температуры в накопителе данных бортового регистратора параметров полета (черный ящик). Но это, в общем-то, больше относится к современным крупным лайнерам.

А что касается, например, наших военных самолетов, то здесь, по-моему, до сих пор более распространено простое охлаждение колес водой из шланга специальной поливочной машины (КПМ) вручную. Сам этим занимался в свое время неоднократно на летних полетах самолетов СУ-24МР :-). Обобщать, правда, не стоит. Не все тормозные диски можно поливать водой в разогретом состоянии. Все зависит от их материала и конкретной конструкции узла.

Карбоновые тормоза основной стойки самолета А320 на сборочном заводе Airbus. Самолет А320 - 232 MSN4474, регистрационный номер В-6720 выпущен 05.11.2010 и летает сейчас в авиакомпании Shenzhen Airlines (Китай).

Тормозные устройства (многодисковые) основной стойки бомбардировщика В-1.

Основная стойка шасси тестового самолета фирмы Bombardier Aerospace с электрическими карбоновыми тормозами.

На всех современных колесных тормозах обязательно присутствует антиюзовая автоматика. Опять же, проводя аналогию с автомобильным транспортом, что-то типа ABS. Ведь известно, что максимальная эффективность торможения возможна при максимальном коэффициенте трения между резиновой шиной колеса и поверхностью ВПП, то есть, соответственно, при большом тормозящем усилии со стороны тормозного механизма.

Однако, понятно и то, что при таком коэффициенте трения колесо так сильно тормозится, что может начать проскальзывать, а не катиться по бетонке. То есть попросту может начаться юз (скольжение). Колесо перестает вращаться, блокируется. Такая ситуация неприемлема, так как в этом случае теряется управляемость и на больших скоростях пневматик (шина) колеса может повредиться (то есть просто протереться о бетонку до разрушения).

Основная стойка шасси МИГ-31. Виден датчик анитюзовой автоматики.

Поэтому на самолете (как и на автомобиле :-)) есть система управления антиюзовой автоматикой (автомат торможения), которая опираясь на данные датчиков, установленных на колесе ( электрические, электроинерционные и др.) регулирует величину тормозного усилия периодическим отключением и включением тормоза в зависимости от возникновения условий для юза.

А вообще грамотное использование тормозов самолета вполне можно отнести к такому понятию, как мастерство летчика, и оно во многом может зависить от его опыта и качеств, как профессиональных, так и человеческих.

Ремонтные работы на шасси ТУ-22М3.

Однако, как бы не были хороши современные дисковые тормоза самолета, они имеют определенный диапазон применения по скорости. Сразу после касания шасси современного самолета ВПП они не могут быть задействованы из-за возможности перегрева и повреждения элементов посадочных устройств (в частности, пневматиков колес).

Более того (и это, пожалуй, главное) на большой скорости тормоза малоэффективны. Ведь крыло еще продолжает выполнять свои функции и создает подъемную силу. Самолет как бы «привстает на цыпочки» 🙂 над ВПП, и поэтому сцепление колес с бетонкой, скажем так, невелико, а отсюда и коэффициент трения далек от своих оптимальных значений.

Кроме того эффективность применения традиционных тормозов самолета зависит от состояния поверхности ВПП. Ведь коэффициент трения (сцепления) ощутимо меняется, если бетонка намокнет под дождем или ее покроет снег или даже лед.

Тормоза самолета обычно применяются начиная со скорости около 150- 180 км/ч. Но до такой скорости его надо еще довести. Вот для этого как раз и используются средства торможения, эффективность которых проявляется именно на большой посадочной скорости. Их относят к разряду аэродинамических и действие их абсолютно не зависит от состояния поверхности ВПП.

Первое — это различного вида тормозные щитки (и им подобные приспособления), иначе еще называемые воздушными тормозами. Они выпускаются в набегающий поток для создания аэродинамического сопротивления, и действие их напрямую зависит от площади поверхности «противопоставляемой» потоку. Располагаются они чаще всего на фюзеляже.

СУ-27. Поднят тормозной щиток.

Тормозные щитки F-16.

В большей степени они применяются в полете, однако на пробеге для торможения тоже могут быть использованы, пока скорость еще высока. Все определяет конструкция и характеристики самолета.

В отдельную группу выделяются интерцепторы, которые имеют очень многие современные самолеты, не только гражданские, но и военные. Эти аэродинамические поверхности расположены на верхней части крыла и поднимаются в поток, подобно обычным щиткам как в полете, так и на пробеге после посадки.

Однако, это не обычные щитки. Это, как их еще называют, органы непосредственного управления подъемной силой. В полете они используются для управления самолетом по каналу крена (как дополнительная или основная система). Это так называемые элерон-интерцепторы. Не менее важную роль они играют и применительно к нашей теме, то есть во время торможения на пробеге после посадки.

Они, конечно, повышают аэродинамическое сопротивление самолета и способствуют его торможению. Однако, на пробеге после посадки главное их предназначение — это гашение подъемной силы крыла за счет турбулизации и повышения давления потока (а по сути дела срыва) на его верхней поверхности.

Посадка самолета А320. Выпущены интерцепторы и спойлеры.

При этом самолет под влиянием собственной массы плотнее прижимается к ВПП шинами (пневматиками) колес и эффективность работы тормозов увеличивается. Такого рода интерцепторы называются спойлерами. Спойлеры обычно больше по площади и расположены ближе к фюзеляжу, чем элерон-интерцепторы.

Одним из самых эффективных средств торможения самолета на большой скорости (то есть сразу после посадки), в том числе и по сравнению с тормозными щитками является тормозной парашют.

Именно на первом этапе торможения, сразу после посадки его эффективность наиболее высока, потому что лобовое аэродинамическое сопротивление прямо пропорционально квадрату скорости. Применение тормозного парашюта позволяет сократить посадочную дистанцию до 40% (в некоторых случаях даже больше).

Полезное в этом плане применение парашюта интересовало технарей практически сразу после его изобретения. Сам создатель ранцевого парашюта Г.Е. Котельников уже в 1912 году продемонстрировал его тормозящие свойства.

Это было сделано с использованием автомобиля Руссо-Балт, к заднему сидению которого был прикреплен полусферический парашют. Машину разогнали до максимальной скорости (что-то около 70 км/ч), после чего Котельников выбросил его наружу. Торможение было эффективным.

Однако массового применения тормозных парашютов в то время не последовало. Это и понятно: скорости движения не были столь велики. Такого рода тормозные устройства стали применяться позже, сначала в единичных случаях и в основном на специализированных летательных аппаратах.

Впервые на самолете тормозной парашют был применен 21 мая 1937 года. Это был самолет АНТ-6-4М-34Р «Авиаарктика» (командир М.В. Водопьянов) доставлявший участников экспедиции «СП-1» и оборудование к Северному полюсу. Посадочные площадки на льдинах, понятно, были не подготовлены :-), поэтому тормозной парашют сослужил хорошую службу.

Самолет АНТ-6-4М-34Р «Авиаарктика» (командир М.В. Водопьянов) после посадки в районе Северного Полюса с использованием тормозного парашюта. На фото командир.

Еще один достаточно ранний пример такого применения — германский разведчик-бомбардировщик с реактивными двигателями конца второй мировой войны Arado Ar 234. У этого самолета тормозной парашют применялся как штатное средство для торможения и сокращения длины пробега.

Реактивный бомбардировщик Arado 234B 2 с тормозным парашютом (стрелка) и американскими опознавательными знаками.

Скорости применения современного тормозного парашюта составляют порядка 180-350 км/ч. В соответствии с условиями использования и типом летательного аппарата рассчитывается его площадь и форма купола. Она может быть круглой, ленточной или крестообразной и самих куполов может быть больше одного (два или даже три). Многое зависит от массы самолета и способа размещения на нем тормозного парашюта.

Общая площадь куполов (купола) на тяжелых самолетах может достигать 200 м2, тогда как на легких эта величина обычно не превышает 15-35 м2.

Посадка North American XB-70 Valkyrie. Парашют трехкупольный.

Работы NASA по испытанию тормозного парашюта для космического челнока Discovery на самолете В-52. Видны выпущенные интерцепторы.

Ткань парашюта имеет специальную структуру, поддерживающую ее проницаемость на определенном уровне. То есть она должна создавать нужное лобовое сопротивление, но при этом быть достаточно проницаемой для того, чтобы исключить раскачивание купола, а вместе с ним и самолета.

Одно из преимуществ этого средства торможения в том, что большой по площади тормозной парашют, создающий такое же большое аэродинамическое сопротивление (а значит и достаточно эффективный) после укладки может быть размещен в небольших по объему полостях планера самолета.

B-52 Stratofortress. Посадка с использованием тормозного парашюта.

Контейнер тормозного парашюта (эта самая полость) обычно располагается в хвостовой части как можно ближе к продольной оси, проходящей через центр тяжести самолета. Сам парашют в уложенном состоянии в защитном чехле чаще всего имеет цилиндрическую форму, однако она может быть и другой. На самолете ЯК-28, например, парашют в снаряженном состоянии имеет треугольную форму.

Установка тормозного парашюта в контейнер самолета СУ-7Б.

Контейнер тормозного парашюта самолета ЯК-28Р.

Самолет ЯК-28Л после сброса тормозного парашюта. Контейнерт открыт, виден чехол ТП.

Установка тормозного парашюта на самолет ЯК-28.

Стропы парашюта сходятся в силовой трос, на конце которого находится скоба. Она при установке парашюта в контейнер закрывается в замке тормозного парашюта (ЗТП), укрепленном в корпусе планера самолета.

С другой стороны чехол парашюта зачековывается специальной чекой-шпилькой с тросиком на конце. После установки парашюта в контейнер и закрытия створок контейнера чека вытягивается (через спецотверстие) и парашют оказывается готовым к применению.

СУ-27. Тормозной парашют установлен в контейнер. Видна чека на парашюте, которая будет снята после закрытия контейнера. Техник проверяет закрытие замка тормозного парашюта (ЗТП).

Ввод в действие чаще всего электродистанционный. Летчик нажимает в кабине кнопку, створки контейнера раскрываются, из расчекованного чехла вылетает небольшой подпружиненный вытяжной купол, который вытягивает за собой основной парашют.

В целом время открытия небольших тормозных парашютов занимает около 1,5 сек., а больших многокупольных систем — около 3 сек.

МИГ-25РУ. Вытяжной парашют пошел.

СУ-24МР. Вытяжной купол вышел, пошел основной.

Су-24М. Тормозной парашют выпущен. Выпушены также тормозные щитки.

Самолет МИГ-25РУ. Тормозной парашют выпущен.

Посадка СУ-24МР.

МИГ-31. Парашют выпущен. Видны выпущенные тормозные щитки.

После использования парашюта, когда он становится уже неэффективен, в определенном месте летного поля он сбрасывается. Для этого в кабине нажимается кнопка «Сброс», замок ЗТП открывается и парашют остается на бетонке. Далее специальные парашютные службы подбирают его и отправляют на переукладку. В среднем тормозной парашют может выдержать около 50-75 применений. Все, в общем, зависит от внешних условий и назначенного ресурса :-).

МИГ-31. Сброс парашюта.

СУ-24М после посадки и сброса парашюта. Контейнер тормозного парашюта пуст

Что касается момента и способов ввода тормозного парашюта в действие. Обычно это выполняется после касания ВПП основных стоек шасси вручную, то есть дистанционным способом из кабины, как уже было сказано. Однако могут быть ньюансы.

Например, на самолете МИГ-25 различных модификаций имеется возможность автоматического раскрытия парашюта. В хвостовой части самолета расположены подфюзеляжные аэродинамические гребни. На нижней кромке левого гребня смонтирован специальный щуп, убранный в нормальном положении и выпускаемый перед посадкой. При касании этим щупом поверхности ВПП происходит автоматический ввод в действие тормозного парашюта. То есть по сути дела при нахождении самолета еще в воздухе.

Самолет МИГ-31. Выход основного купола тормозного парашюта.

На самом деле имеется практика применения специального тормозного парашюта в воздухе, до касания ВПП колесами шасси. Такого рода парашют называется «парашютом подхода». С его помощью можно формировать профиль снижения летательного аппарата и укорачивать посадочную дистанцию.

Однако, массового применения такой парашют из-за сложности и специфичности пилотажа не имеет и применялся в основном на скоростных специализированных самолетах при определенных обстоятельствах.

Например, на американском бомбардировщике конца 40-х, начала 50-х годов Boeing B-47 Stratojet два тормозных парашюта. Один диаметром около 5 метров, второй вдвое большего диаметра. Меньший парашют как раз и был парашютом подхода.

А применялся он из-за специфической причины. Двигатели этого самолета имели очень большую приемистость. Более 20 сек. им нужно было для выхода с малого газа на максимальный режим. Это сильно ограничивало возможности самолета при необходимости ухода на второй круг.

Поэтому обороты двигателей при заходе на посадку не опускались ниже средних значений, а для торможения самолета еще в воздухе выпускался малый парашют. В случае необходимости он сбрасывался, и самолет уходил на второй круг. А в случае штатной посадки дополнительно к нему на земле выпускался основной тормозной парашют.

Стратегический бомбардировщик В-47.

Бомбардировщик В-47 (наше время, музейная выставка).

Вот, примерно так обстоят дела с самолетными тормозными устройствами. Современные «серьезные» 🙂 самолеты обычно имеют «комплект» как минимум из двух такого рода систем. Только авиация общего назначения, как правило, обходится одними тормозами самолета.

Пассажирские и транспортные аппараты чаще всего имеют реверс тяги и хорошие тормоза. Более скоростная и экстремальная военная авиация вместо реверса использует тормозные парашюты. Хотя, конечно, исключения бывают. Например, известный шведский истребитель Saab-37 Viggen . Я упоминал об этом здесь (в том числе видеоролик).

Кроме того, в свое время первый реактивный пассажирский лайнер ТУ-104 (а за ним и ТУ-124) использовал тормозной парашют. Более того до сих пор летающий ТУ-134 тоже когда-то использовал это полезное устройство. И только после оборудования этого самолета двигателями с реверсом тяги (самолет ТУ-134А с 1970 года), от тормозных парашютов отказались.

Самолет ТУ-134А-3М.

Пассажирский ТУ-104.

Имеющиеся тормозные системы работают в комплексе, дополняя друг друга на различных этапах торможения самолета. Плюс к этому свое положительное действие оказывают вышеупомянутые тормозные щитки и интерцепторы. В итоге получается вполне приемлемая картина 🙂 и, кстати, в немалой степени экономится ресурс тормозов самолета.

Существуют, правда, еще более специализированные тормозные системы. Ведь, к сожалению, бывают ситуации, когда летательный аппарат, имеющий на борту весь набор штатных устройств, тем не менее по какой-либо причине не может затормозиться вовремя. Или же посадочная полоса столь коротка, что это сделать просто физически невозможно (как, например, на авианосном корабле).

В таких ситуациях применяются эти самые специализированные системы (если конечно, они есть в наличии :-)). Но это уже аэродромное оборудование, то есть разговор совсем другой темы и другой статьи.

В заключение небольшая подборка видеороликов. Первых два показывают непосредственную работу тормозов самолета, то есть сжатие тормозных дисков поршнями силовых цилиндров. Далее четырехминутный ролик о самолете ХВ-70, в котором показана его посадка с разрушением пневматика основной стойки шасси. И последний ролик — испытание парашюта для шаттла на самолете В-52 (фото есть в тексте).

До новых встреч.

Фотографии кликабельны.

Related posts:

  1. О проблеме попадания посторонних предметов в двигатель летательного аппарата.

avia-simply.ru

Тормоза авиационные » Привет Студент!

Кинетическая энергия самолета в момент его приземления равна

 

где Vпос — посадочная скорость; Gпос — вес самолета при посадке; g — ускорение силы тяжести.

В течение 15—30 сек посадочного пробега требуется рассеять огромную энергию движения. Часть энергии затрачивается на аэродинамическое сопротивление, часть — на сопротивление колес перекатыванию, а большая часть рассеивается в виде тепла тормозами колес.

Применение тормозных колес позволяет сократить длину пробега самолета и этим резко уменьшить размеры аэродромов. Колеса с тормозами позволяют улучшить маневренность самолета на земле и обеспечить пробу двигателей без подкладывания колодок под колеса.

Повышение эффективности тормозов достигается установкой автоматов, предупреждающих скольжение (юз) колес шасси, что уменьшает длину пробега самолета и сохраняет покрышки, снижая их износ.

Тормозные устройства колес бывают колодочные, дисковые и камерные с гидравлическими, электрическими, воздушными и механическими приводами.

Колодочные тормоза. Основным элементом конструкции такого тормоза является колодка, представляющая собой деталь таврового сечения, отлитую из легкого сплава. К колодке крепится тормозная лента из пластмассы с высоким коэффициентом трения и повышенной теплостойкостью. Колодок может быть одна, две, три и больше.

При торможении колодки прижимаются своей поверхностью к тормозному барабану и создают тормозной момент.

Тормозные колодочные устройства бывают прямого, обратного и двойного действия. В тормозном устройстве прямого действия колодки поворачиваются при торможении в направлении вращения колеса. В тормозном устройстве обратного действия колодки поворачиваются в направлении, обратном вращению колеса. В настоящее время колодочные тормоза применяются редко.

Камерные тормоза. В камерных тормозных устройствах (см. рис. 78) тормозной момент создается в результате трения между тормозными колодками и тормозным барабаном колеса. Колодки при торможении перемещаются в радиальном направлении под Действием воздуха или жидкости, поступающих в резиновую камеру, и по всей окружности прижимаются к тормозному барабану

 

 

колеса. Когда давление в камере понижается, пружины, вставленные в колодки, отодвигают последние от барабана.

Камерные тормозные устройства обладают малым весом, работают плавно без заклинивания, отличаются простотой изготовления и эксплуатации, имеют равномерный износ тормозных колодок, но мало надежны из-за быстрого разрушения камеры и сравнительно маломощны.

Дисковые тормоза. Колеса с дисковыми тормозами в современной авиации на тяжелых самолетах применяются чаще других, так как они по сравнению с колодочными и камерными обладают при равных размерах колеса большим тормозным эффектом, более надежны, не требуют сложной и трудоемкой работы по регулировке зазоров, обеспечивают плавное торможение. Лучшая изолированность тормоза от обода уменьшает возможность разрушения камеры пневматика от воздействия высоких температур при перегреве тормоза.

Колеса с дисковыми тормозными устройствами тормозятся трением между неподвижными дисками, закрепленными на корпусе тормоза, и дисками подвижными, вращающимися совместно с колесом, с которым эти диски сцеплены, и могут перемещаться в направлении оси ступицы колеса.

Дисковый тормоз (рис. 79) состоит из корпуса тормоза и кольцевого поршня, тормозных дисков и прижимного диска.

При подаче давления жидкости в кольцевую полость тормоза поршень начнет перемещаться и при этом устраняется имевшийся в тормозе первоначальный зазор между дисками. Прижимный диск воспринимает от поршня усилие распора и сжимает весь пакет дисков.

При вращении колеса благодаря прижатию дисков друг к другу возникают силы трения и, следовательно, тормозной момент. При уменьшении давления в кольцевой полости прижимный диск и поршень возвращаются в исходное положение (колесо растормаживается) под действием пружин узла растормаживания (узел растормаживания на рисунке не показан).

 

Используемая литература: "Основы авиации" авторы: Г.А. Никитин, Е.А. Баканов

 

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ

Пароль на архив: privetstudent.com

 

 

privetstudent.com

Характерные признаки дефекта тормозной системы и методы их устранения

1.Недостаточная эффективность торможения. Так называемый "провал" педали тормоза. Ниже перечислены возможные причины неполадок, и методы их возможного устранения:

  • При попадании воздуха в тормозную систему, удалить воздух прокачкой тормозной системы согласно "Технологии".
  • При утечке тормозной жидкости из колесных цилиндров, нужно заменить поврежденные детали цилиндра, промыть и просушить фрикционные накладки, проверить все узлы тормозной системы. При необходимости заменить тормозной цилиндр.
  • Периодический "провал" педали тормоза без потери эффективности торможения. Ощущается большой свободный ход педали. Контролировать разбухание уплотнителей главного тормозного цилиндра. Дефектные детали заменить.
  • Неправильная установка регулятора давления. Установить регулятор согласно "Руководству".
  • Регулятор давления не работает - заклинил. Коррозия подпятника поршня. Заменить регулятор.
  • Некачественный материал накладок. Склонность материала накладок к замасливанию. Заменить колодки. Поверхность тормозного барабана очистить от наволакивания.
  • Течь через заглушку регулятора давления. Заменить регулятор давления.
  • Применение колодок с несоответствующими накладками (производства привлеченных предприятий). Заменить колодки.

2. Вибрация автомобиля при торможении

Повышенная овальность тормозных барабанов (более 0,15 мм). Заменить барабаны. При овальности менее 0,15 мм заменить колодки, поверхность тормозного барабана очистить от наволакивания.

3. Скрип тормозов

  • Инородные включения в материале накладок колодок. Заменить тормозные колодки. При задире - заменить сопрягаемые детали (диски, барабаны).
  • Замасливание фрикционных накладок колодок. Зачистить накладки, предварительно промыв их бензином. Устранить место течи.

4. Занос или увод автомобиля в сторону при торможении

  • Утечка тормозной жидкости в одном из колесных цилиндров. При отсутствии рисок, раковин в цилиндре заменить вышедшие из строя детали. При обнаружении рисок заменить цилиндр.
  • Большая разность давлений в шинах. Отрегулировать давление согласно "Руководству по эксплуатации автомобиля". Дефект может быть связан с качеством шин - проверить перестановкой колес.
  • Перекрытие трубопровода в результате механического повреждения. Заменить трубопровод.
  • Не отрегулированы углы установки колес. Отрегулировать углы установки колес.
  • Загрязнение или замасливание дисков, барабанов и накладок. Очистить детали тормозных механизмов.
  • Заклинивание поршня колесного цилиндра. Заменить колесный цилиндр.
  • Неисправен (течь через заглушку) регулятор давления. Заменить регулятор давления.
  • Неправильная регулировка привода регулятора давления. Отрегулировать положение регулятора давления согласно "Руководству".

5. Притормаживание одного из колес при отпущенной педали тормоза

  • Нарушено положение суппорта относительно тормозного диска. Ослабление болтов крепления суппорта к кронштейну. Затянуть болты. При необходимости заменить поврежденные детали.
  • Повышенное биение тормозного диска (более 0,15 мм). Заменить диск.
  • Набухание уплотнительных колец колесных цилиндров. Попадание в жидкость ГСМ или применение других жидкостей. Отремонтировать.
  • Ослабление или разрушение стяжной пружины колодок задних тормозов. Заменить пружину.

6. Притормаживание колес автомобиля на ходу при отпущенной педали тормоза. При нейтральной передаче автомобиль быстро теряет скорость (отсутствует "накат" автомобиля). Возможен перегрев тормозных барабанов и дисков

  • Отсутствует или недостаточен свободный ход педали тормоза. Неправильное положение выключателя стоп-сигнала. Отрегулировать положение толкателя до легкого соприкосновения с выключателем стоп-сигнала перемещением выключателя.
  • Засорение компенсирующего отверстия в главном тормозном цилиндре. Прочистить цилиндр.
  • Разбухание резиновых манжет вследствие попадания ГСМ или другой жидкости в главный тормозной цилиндр. Очистить всю тормозную систему, заменить вышедшие из строя детали.
  • Не отрегулирован вылет регулировочного винта вакуумного усилителя относительно плоскости крепления главного цилиндра. Отрегулировать вылет регулировочного винта (должен быть 1,25-0,2 мм).
  • Медленный возврат толкателя штока вакуумного усилителя тормозов вследствие наконечника. Попадание паров бензина в ВУТ, разбухание резинотехнических изделий. Заменить вакуумный усилитель тормоза и клапан в сборе.
  • Заедание поршня в колесном цилиндре вследствие коррозии. Заменить колесный цилиндр.

7. Увеличенный рабочий ход педали тормоза

  • Попадание воздуха в тормозную систему. Удалить воздух прокачкой системы.
  • Отсутствует жидкость в питательном бачке. Долить тормозную жидкость. Прокачать систему, устранить причину течи.
  • Завышенный зазор между колодками и барабаном вследствие износа колодок или некачественной работы устройства полуавтоматической регулировки положения колодок. Заменить колодки. При необходимости устранить дефект устройства регулировки колодок.
  • Большая объемная деформация гибких шлангов. Заменить шланги.
  • Завышенный зазор в подшипниках ступиц передних колес. Отрегулировать зазор.
  • Повреждение резиновых уплотнителей главного цилиндра. Заменить уплотнители или цилиндр.
  • Занижен диаметр (вырывы) на уплотнительных кольцах главного тормозного цилиндра. Заменить главный тормозной цилиндр.

8. Уменьшенный рабочий ход педали тормоза

  • Отсутствует зазор между поршнем главного цилиндра и штоком вакуумного усилителя. Отрегулировать вылет регулировочного винта (должен быть 1,25-0,2 мм).
  • Засорение компенсационного отверстия главного тормозного цилиндра. Прочистить тормозную систему.
  • Перекрытие компенсационного отверстия главного тормозного цилиндра вследствие "разбухания" резиновых уплотнителей - попадание в тормозную жидкость ГСМ или применение нерекомендованных жидкостей.

9. Самопроизвольное торможение автомобиля при работающем двигателе

  • Подсос воздуха в вакуумном усилителе через уплотнительный узел крышки. Заменить вакуумный усилитель.

10. Увеличение усилия нажатия на педаль тормоза ("тугая" педаль)

  • Засорение воздушного фильтра вакуумного усилителя со стороны педали тормоза. Заменить воздушный фильтр.
  • Заедание корпуса клапана вакуумного усилителя. Заменить вакуумный усилитель.
  • Повреждение шланга, соединяющего вакуумный усилитель с впускным коллектором двигателя, или ослабление крепления шланга на штуцерах. Заменить шланг или подтянуть хомуты.
  • Разрушение диафрагмы вакуумного усилителя. Заменить вакуумный усилитель.
  • Не работает наконечник вакуумного усилителя. Заменить наконечник.
  • Не работает, заедает обратный клапан вакуумного усилителя. Заменить обратный клапан вакуумного усилителя.
  • Попадание топлива в полость вакуумного усилителя из-за негерметичности обратного клапана. Заменить вакуумный усилитель с обратным клапаном в сборе.
  • Неисправен вакуумный усилитель. Заменить вакуумный усилитель.
  • Разбухание уплотнительных колец колесных цилиндров из-за попадания в жидкость ГСМ или применение других жидкостей.

11. Стук и скрип тормозов

  • Чрезмерное биение (более 0,15 мм) тормозного диска или его неравномерный износ (ощущается по вибрации тормозной педали). Заменить тормозной диск.
  • Ослабление стяжной пружины тормозных колодок заднего тормоза. Заменить стяжную пружину.
  • Разрушены пружины поджатия колодки. Заменить колодки.
  • Заклинивание (коррозия) одного из поршней задних колесных цилиндров. Заменить колесный цилиндр.

auto-grad73.ru

Реферат Воздушный тормоз Вестингауза

скачать

Реферат на тему:

План:

    Введение
  • 1 Введение
  • 2 Усовершенствования
  • 3 Возможные проблемы
  • 4 Стандартизация

Введение

Воздушный тормоз Вестингауза

Воздушный тормоз Вестингауза — название для систем привода тормозов в железнодорожном транспорте, использующих для работы сжатый воздух.

Первая надёжная (автоматическая) система воздушных тормозов была запатентована Джорджем Вестингаузом 5 марта 1872 года. Изобретение Вестингауза стало поистине революционным для железных дорог, обеспечивая надёжное торможение, что, в свою очередь, расширило диапазон скоростей, с которыми могли двигаться составы тех лет. Вестингауз также предложил множество дополнений к своему изобретению, позволяющих его применение в самых различных системах автоматического торможения. В 1893 году Конгресс США даже принял специальный «Закон об обеспечении безопасности на железнодорожном транспорте» (англ. Railroad Safety Appliance Act), делающий использование таких систем обязательным. Только в Соединённых Штатах к 1905 году более 2 млн грузовых, пассажирских, почтовых и багажных вагонов, а также около 89 тыс. локомотивов были оборудованы автоматическими тормозами Вестингауза.

1. Введение

Часть тормозной системы производства Westinghouse Air brake Company

В самой простой системе воздушного тормоза, которая называется системой прямого действия (или прямодействующий тормоз), сжатый воздух давит на поршень в цилиндре. Поршень соединён с тормозной колодкой, которая трётся о колесо вагона или локомотива, заставляя его остановиться. Сжатый воздух подаётся компрессором локомотива от вагона к вагону через специальную тормозную магистраль (систему труб), проходящую через весь состав, и имеющую гибкие вставки между вагонами. Принципиальной проблемой такой системы является то, что в случае нарушения герметичности магистрали или её соединений, давление в системе будет падать, и его может не хватить для надежного торможения, что может привести к аварии. Системы прямого действия применяются только на локомотивах, имеют двухконтурную схему, когда на каждой тележке устанавливается свой независимый контур.

Для устранения указанного недостатка систем прямого действия Вестингауз предложил оборудовать каждый вагон воздушным резервуаром, а также специальным «тройным клапаном», также называемым управляющим клапаном.

Зачастую говорят, что «тройным» клапан назван потому, что он выполняет три функции. На самом деле это миф, потому что на самом деле функций у него всего две: он прикладывает усилие к тормозам и отпускает их. Конечно, параллельно он выполняет и другие сопутствующие операции, например, поддерживает усилие, или позволяет воздушному резервуару наполняться при отпускании. В своём основном патенте Вестингауз ссылается на «тройное клапанное устройство», потому что оно состоит из трех компонентов: тарельчатого клапана, подающего воздух из резервуара к тормозным цилиндрам, клапана заполнения резервуара, а также клапана, освобождающего тормозные цилиндры.

Принцип работы системы следующий:

  • если давление в воздушной магистрали поезда ниже, чем в резервуаре, выпускной клапан тормозного цилиндра закрывается, и воздух из вагонного резервуара (запасный резервуар) подается в тормозной цилиндр, вызывая срабатывание тормозов;
  • если давление в магистрали выше, чем в вагонном резервуаре, тройной клапан соединяет магистраль с резервуаром, тем самым наполняя его. Параллельно он открывает выходное отверстие тормозного цилиндра, обеспечивая отпуск тормоза.
  • в тот момент, когда давление в резервуаре сравнивается с давлением в магистрали, тройной клапан закрывается, а тормозной цилиндр остается в своём последнем положении.

В отличие от систем прямого действия, система Вестингауза использует понижение давления в линии для инициирования торможения. Когда машинисту необходимо снизить скорость, он открывает тормозной клапан, соединяющий воздушную линию поезда с атмосферой, давление в магистрали снижается, и срабатывают тормозные цилиндры вагонов. Если же клапан закрыть, давление в магистрали восстанавливается компрессором локомотива, давление повышается, тормозные цилиндры вагонов открываются в атмосферу, освобождая тормоза и перезаряжая резервуары.

Таким образом, система Вестингауза становится надежной — ведь любое повреждение воздушной магистрали на любом её участке, включая такое серьёзное, как разрыв состава, вызовет немедленную остановку всего поезда. Поэтому тормоз Вестингауза называется автоматическим.

2. Усовершенствования

Современные воздушные тормозные системы состоят из двух частей:

  • обычной, работающей в штатном режиме;
  • аварийной (ускорителя), вызывающей ускоренное торможение в случае разрыва воздушной магистрали.

В обычном режиме машинист снижает давление в магистрали на определенную величину. Требуется несколько секунд, чтобы давление в магистрали снизилось, и еще несколько секунд для срабатывания тормозов по всему составу. Но для экстренного торможения магистраль напрямую соединяется с атмосферой, что приводит к немедленному срабатыванию всех тормозных цилиндров. В таком же режиме система работает в случае нарушения целостности магистрали или другой аварии.

Постановка задачи аварийного применения системы добавляет в нее ещё один компонент. Тройной клапан разделяется на две части: штатную, используемую в обычном режиме, и аварийную, которая реагирует на резкое снижение давления в воздушной магистрали. Воздушный резервуар также при этом делится на две части — штатную и аварийную. Такой резервуар называется «двухотсечным». При обычной работе давление подается в тормозные цилиндры только из штатного отсека, в то время как при аварийном торможении включаются оба, и тормозное усилие возрастает на 20—30 %.

Аварийная часть тройного клапана срабатывает при экстремально быстром падении давления в магистрали. Так как поезда обычно имеют большую длину, а диаметр магистрали относительно мал, тормозное усилие будет заметно выше в голове состава (в случае аварийного торможения, инициированного машинистом) или в районе разрыва магистрали. Чтобы избежать неравномерного срабатывания тормозов по длине состава, ускоритель каждого вагона при срабатывании производит дополнительное снижение давления в магистрали.

Кран системы Вестингауза с контактами для управления ЭПТ

Электропневматические тормоза (ЭПТ) — это новый тип воздушных тормозов, обеспечивающий срабатывание всех тормозных систем одновременно вдоль всего состава, в отличие от обычных тормозов, срабатывающих последовательно по мере прохождения тормозной или отпускной волны по магистрали. В настоящее время ЭПТ работают на пассажирских поездах стран бывшего СССР, пригородных поездах многих стран, испытываются в Северной Америке и Южной Африке на составах, перевозящих руду и уголь. Также есть сведения, что такие тормоза применялись в конце 1980-х на высокоскоростных поездах ICE в Германии.

Советские ЭПТ неавтоматического типа, их электровоздухораспределитель (ЭВР) типа 305 собран в единый блок с воздухораспределителем типа 292 (модернизированным тройным клапаном Вестингауза), между ними установлен переключательный клапан, подключающий к тормозному цилиндру тот воздухораспределитель, который даёт большее давление. Это позволяет при отказе ЭПТ остановить поезд обычным автоматическим тормозом. Схема ЭПТ двухпроводная, первый провод основной, к нему подключены ЭВР 305, а второй контрольный, он соединён с основным на последнем вагоне и по нему на локомотив возвращается контрольный ток, подтверждающий целостность цепи ЭПТ. Второй вывод ЭВР-ов заземлён (подключен к корпусу) и рабочий тормозной ток возвращается на локомотив по рельсам.

За рубежом долгое время пассажирские поезда имели трёхпроводную версию электропневматических тормозов, что позволяло устанавливать тормозное усилие на один из семи уровней. В большинстве случаев такая система имеет недостаточную надёжность, так как для приложения тормозного усилия напряжение к проводам нужно прикладывать последовательно, однако в большинстве случаев при аварии такая система может работать и как обычный воздушный тормоз. В более поздних системах управление происходило по проводу, на котором для растормаживания постоянно поддерживалось постоянное напряжение.

В последнее время применяются электронно управляемые тормозные системы, в которых все вагоны соединены локальной вычислительной сетью, что позволяет компьютеру локомотива управлять каждым тормозом индивидуально, а также раздельно получать информацию о состоянии каждого компонента системы.

3. Возможные проблемы

Воздушный тормоз может не сработать, если в одном из вагонов закрыт кран воздушной магистрали. Это приведет к тому, что тормоза вагонов, находящихся за закрытым краном, не смогут отреагировать на изменение давления в магистрали. Были случаи, когда это приводило к тяжёлым авариям (катастрофа на станции Каменская, железнодорожная катастрофа на Лионском вокзале).

Для предотвращения таких инцидентов принимаются специальные защитные меры. На всех железных дорогах установлены жёсткие правила, регулируемые специальным законодательством, по проверке поездов перед рейсом. Эти меры применяются на всех этапах — от соединения воздушных магистралей вагонов и зарядки резервуаров до проверки срабатывания, а затем и отпускания каждого тормоза вдоль всего состава. Особое внимание уделяется последнему вагону, проходимость магистрали от локомотива проверяется с помощью специального устройства или вручную — открытием концевого крана последнего вагона, при этом машинист должен подтвердить, что видит по манометру падение давления, а по составу слышен резкий звук срабатывания ускорителей и бывает даже видно, как выходящий из ускорителя воздух раздувает пыль под вагоном.

Если воздух проходит по всей длине состава, но тормоза отдельного вагона не работают — его тройной клапан неисправен. В зависимости от доступности ремонтных мастерских, а также от законодательства, регулирующего допустимое количество неработающих тормозов в составе, такой вагон может быть снят с рейса немедленно, либо отправлен в ремонт в ближайшем доступном пункте. Также целостность магистрали проверяют перед отправлением кратковременной постановкой ручки крана в положение сверхзарядки (первое), при этом по скорости нарастания давления в магистрали можно судить по её объёму — чем быстрее нарастает давление, тем короче магистраль. В длинносоставных грузовых поездах давление почти не нарастает, если же нарастание слишком быстрое (давление за несколько секунд возрастает до предельного), то тормозная магистраль короткая — короткосоставный поезд или перекрытие концевого крана в первой части состава.

Другая возможная неисправность — неправильный подбор тормозных колодок, которые могут перегреться и перестать работать на длинном уклоне. Такой случай произошёл на 30-километровом спуске между городом Катумба и пригородом Сиднея Эму-Плайнс в Австралии. Поезд потерял управление, и крушение не произошло только по счастливой случайности.

4. Стандартизация

Современный пневматический тормоз отличается от оригинального, благодаря различным изменениям в конструкции тройного клапана, которые не полностью совместимы между собой. Однако при этом, базовый принцип пневматических тормозов неизменен по всему миру.

wreferat.baza-referat.ru

Воздушный тормоз Вестингауза - Gpedia, Your Encyclopedia

У этого термина существуют и другие значения, см. Тормоз. Воздушный тормоз Вестингауза

Воздушный тормоз Вестингауза — название для систем привода тормозов в железнодорожном транспорте, использующих для работы сжатый воздух.

Первая надёжная (автоматическая) система воздушных тормозов была запатентована Джорджем Вестингаузом 5 марта 1872 года. Изобретение Вестингауза стало поистине революционным для железных дорог, обеспечивая надёжное торможение, что, в свою очередь, расширило диапазон скоростей, с которыми могли двигаться составы тех лет. Вестингауз также предложил множество дополнений к своему изобретению, давшие возможность применять его в самых различных системах автоматического торможения. В 1893 году Конгресс США даже принял специальный «Закон об обеспечении безопасности на железнодорожном транспорте» (англ. Railroad Safety Appliance Act), делающий использование таких систем обязательным. Только в Соединённых Штатах к 1905 году более 2 млн грузовых, пассажирских, почтовых и багажных вагонов, а также около 89 тыс. локомотивов были оборудованы автоматическими тормозами Вестингауза.

Введение

Часть тормозной системы производства Westinghouse Air brake Company

В самой простой системе воздушного тормоза, которая называется системой прямого действия (или прямодействующий тормоз), сжатый воздух давит на поршень в цилиндре. Поршень соединён с тормозной колодкой, которая трётся о колесо вагона или локомотива, заставляя его остановиться. Сжатый воздух подаётся компрессором локомотива от вагона к вагону через специальную тормозную магистраль (систему труб), проходящую через весь состав, и имеющую гибкие вставки между вагонами. Принципиальной проблемой такой системы является то, что в случае нарушения герметичности магистрали или её соединений, давление в системе будет падать, и его может не хватить для надежного торможения, что может привести к аварии. Системы прямого действия применяются только на локомотивах, имеют двухконтурную схему, когда на каждой тележке устанавливается свой независимый контур.

Для устранения указанного недостатка систем прямого действия Вестингауз предложил оборудовать каждый вагон воздушным резервуаром, а также специальным «тройным клапаном», также называемым управляющим клапаном.

Зачастую говорят, что «тройным» клапан назван потому, что он выполняет три функции. На самом деле это миф, потому что на самом деле функций у него всего две: он прикладывает усилие к тормозам и отпускает их. Конечно, параллельно он выполняет и другие сопутствующие операции, например, поддерживает усилие, или позволяет воздушному резервуару наполняться при отпускании. В своём основном патенте Вестингауз ссылается на «тройное клапанное устройство», потому что оно состоит из трех компонентов: тарельчатого клапана, подающего воздух из резервуара к тормозным цилиндрам, клапана заполнения резервуара, а также клапана, освобождающего тормозные цилиндры.

Принцип работы системы следующий:

  • если давление в воздушной магистрали поезда ниже, чем в резервуаре, выпускной клапан тормозного цилиндра закрывается, и воздух из вагонного резервуара (запасный резервуар) подается в тормозной цилиндр, вызывая срабатывание тормозов;
  • если давление в магистрали выше, чем в вагонном резервуаре, тройной клапан соединяет магистраль с резервуаром, тем самым наполняя его. Параллельно он открывает выходное отверстие тормозного цилиндра, обеспечивая отпуск тормоза.
  • в тот момент, когда давление в резервуаре сравнивается с давлением в магистрали, тройной клапан закрывается, а тормозной цилиндр остается в своём последнем положении.

В отличие от систем прямого действия, система Вестингауза использует понижение давления в линии для инициирования торможения. Когда машинисту необходимо снизить скорость, он открывает тормозной клапан, соединяющий воздушную линию поезда с атмосферой, давление в магистрали снижается, и срабатывают тормозные цилиндры вагонов. Если же клапан закрыть, давление в магистрали восстанавливается компрессором локомотива, давление повышается, тормозные цилиндры вагонов открываются в атмосферу, освобождая тормоза и перезаряжая резервуары.

Таким образом, система Вестингауза становится надежной — ведь любое повреждение воздушной магистрали на любом её участке, включая такое серьёзное, как разрыв состава, вызовет немедленную остановку всего поезда. Поэтому тормоз Вестингауза называется автоматическим.

Усовершенствования

Современные воздушные тормозные системы состоят из двух частей:

  • обычной, работающей в штатном режиме;
  • аварийной (ускорителя), вызывающей ускоренное торможение в случае разрыва воздушной магистрали.

В обычном режиме машинист снижает давление в магистрали на определенную величину. Требуется несколько секунд, чтобы давление в магистрали снизилось, и еще несколько секунд для срабатывания тормозов по всему составу. Но для экстренного торможения магистраль напрямую соединяется с атмосферой, что приводит к немедленному срабатыванию всех тормозных цилиндров. В таком же режиме система работает в случае нарушения целостности магистрали или другой аварии.

Постановка задачи аварийного применения системы добавляет в неё ещё один компонент. Тройной клапан разделяется на две части: штатную, используемую в обычном режиме, и аварийную, которая реагирует на резкое снижение давления в воздушной магистрали. Воздушный резервуар также при этом делится на две части — штатную и аварийную. Такой резервуар называется «двухотсечным». При обычной работе давление подается в тормозные цилиндры только из штатного отсека, в то время как при аварийном торможении включаются оба, и тормозное усилие возрастает на 20—30 %.

Аварийная часть тройного клапана срабатывает при экстремально быстром падении давления в магистрали. Так как поезда обычно имеют большую длину, а диаметр магистрали относительно мал, тормозное усилие будет заметно выше в голове состава (в случае аварийного торможения, инициированного машинистом) или в районе разрыва магистрали. Чтобы избежать неравномерного срабатывания тормозов по длине состава, ускоритель каждого вагона при срабатывании производит дополнительное снижение давления в магистрали.

Кран системы Вестингауза с контактами для управления ЭПТ

Электропневматические тормоза (ЭПТ) — это новый тип воздушных тормозов, обеспечивающий срабатывание всех тормозных систем одновременно вдоль всего состава, в отличие от обычных тормозов, срабатывающих последовательно по мере прохождения тормозной или отпускной волны по магистрали. В настоящее время ЭПТ работают на пассажирских поездах стран бывшего СССР, пригородных поездах многих стран, испытываются в Северной Америке и Южной Африке на составах, перевозящих руду и уголь. Также есть сведения, что такие тормоза применялись в конце 1980-х на высокоскоростных поездах ICE в Германии.

Советские ЭПТ неавтоматического типа, их электровоздухораспределитель (ЭВР) типа 305 собран в единый блок с воздухораспределителем типа 292 (модернизированным тройным клапаном Вестингауза), между ними установлен переключательный клапан, подключающий к тормозному цилиндру тот воздухораспределитель, который даёт большее давление. Это позволяет при отказе ЭПТ остановить поезд обычным автоматическим тормозом. Схема ЭПТ двухпроводная, первый провод основной, к нему подключены ЭВР 305, а второй контрольный, он соединён с основным на последнем вагоне и по нему на локомотив возвращается контрольный ток, подтверждающий целостность цепи ЭПТ. Второй вывод ЭВР-ов заземлён (подключен к корпусу) и рабочий тормозной ток возвращается на локомотив по рельсам.

За рубежом долгое время пассажирские поезда имели трёхпроводную версию электропневматических тормозов, что позволяло устанавливать тормозное усилие на один из семи уровней. В большинстве случаев такая система имеет недостаточную надёжность, так как для приложения тормозного усилия напряжение к проводам нужно прикладывать последовательно, однако в большинстве случаев при аварии такая система может работать и как обычный воздушный тормоз. В более поздних системах управление происходило по проводу, на котором для растормаживания постоянно поддерживалось постоянное напряжение.

В последнее время применяются электронно управляемые тормозные системы, в которых все вагоны соединены локальной вычислительной сетью, что позволяет компьютеру локомотива управлять каждым тормозом индивидуально, а также раздельно получать информацию о состоянии каждого компонента системы.

Возможные проблемы

Воздушный тормоз может не сработать, если в одном из вагонов закрыт кран воздушной магистрали. Это приведет к тому, что тормоза вагонов, находящихся за закрытым краном, не смогут отреагировать на изменение давления в магистрали. Были случаи, когда это приводило к тяжёлым авариям (катастрофа на станции Каменская, железнодорожная катастрофа на Лионском вокзале, Крушение в Челябинской области 11 августа 2011 года).

Для предотвращения таких инцидентов принимаются специальные защитные меры. На всех железных дорогах установлены жёсткие правила, регулируемые специальным законодательством, по проверке поездов перед рейсом. Эти меры применяются на всех этапах — от соединения воздушных магистралей вагонов и зарядки резервуаров до проверки срабатывания, а затем и отпускания каждого тормоза вдоль всего состава. Особое внимание уделяется последнему вагону, проходимость магистрали от локомотива проверяется с помощью специального устройства или вручную — открытием концевого крана последнего вагона, при этом машинист должен подтвердить, что видит по манометру падение давления, а по составу слышен резкий звук срабатывания ускорителей и бывает даже видно, как выходящий из ускорителя воздух раздувает пыль под вагоном.

Если воздух проходит по всей длине состава, но тормоза отдельного вагона не работают — его тройной клапан неисправен. В зависимости от доступности ремонтных мастерских, а также от законодательства, регулирующего допустимое количество неработающих тормозов в составе, такой вагон может быть снят с рейса немедленно, либо отправлен в ремонт в ближайшем доступном пункте. Также целостность магистрали проверяют перед отправлением кратковременной постановкой ручки крана в положение сверхзарядки (первое), при этом по скорости нарастания давления в магистрали можно судить по её объёму — чем быстрее нарастает давление, тем короче магистраль. В длинносоставных грузовых поездах давление почти не нарастает, если же нарастание слишком быстрое (давление за несколько секунд возрастает до предельного), то тормозная магистраль короткая — короткосоставный поезд или перекрытие концевого крана в первой части состава.

Другая возможная неисправность — неправильный подбор тормозных колодок, которые могут перегреться и перестать работать на длинном уклоне. Такой случай произошёл на 30-километровом спуске между городом Катумба и пригородом Сиднея Эму-Плайнс в Австралии. Поезд потерял управление, и крушение не произошло только по счастливой случайности.

Стандартизация

Современный пневматический тормоз совершеннее оригинального, благодаря различным изменениям в конструкции тройного клапана, которые модульные . Однако при этом, базовый принцип пневматических тормозов неизменен по всему миру.

Ссылки

www.gpedia.com

Принцип действия пневматических тормозов

ПРИНЦИП ДЕЙСТВИЯ ПНЕВМАТИЧЕСКИХ ТОРМОЗОВ

По принципу действия пневматические тормоза делятся на три основные группы:

  • неавтоматические прямодействующие;
  • автоматические непрямодействующне;
  • автоматические прямодействующие.

Неавтоматический прямодействующий тормоз применяется только для торможения локомотива и является вспомогательным.Компрессор 1 нагнетает в главный резервуар 2 сжатый воздух, который по питательной магистрали 3 поступает к крану машиниста 4.Кран машиниста условно изображен в виде переключательной пробки, в которой высверлен прямоугольный канал. При постановке ручки крана машиниста в положение отпуска III тормозная магистраль 5 с соединительными рукавами, концевыми кранами и тормозные цилиндры 6 сообщаются с атмосферой Ат. Рычажная передача 9 при этом удерживает башмаки с колодками 10 на определенном расстоянии от поверхности катания колес.

Прямодействующий неавтоматический тормоз

При переводе ручки крана в положение торможения I сжатый воздух из главного резервуара 2 по питательной магистрали 3 через кран машиниста 4, тормозную магистраль 5 поступает в цилиндр 6, передвигая поршень 7 со штоком 8 и связанную с ним рычажную передачу 9 и прижимая колодки к колесам. Перемещение ручки крана в положение перекрыши II приводит к отключению главного резервуара от магистрали 5 и цилиндра 6. Вся система остается в заторможенном состоянии, причем утечки воздуха из тормозного цилиндра не восполняются. Этот тормоз называется неавтоматическим потому, что при разрыве поезда (разъединении рукавов) торможения не происходит, сжатый воздух уходит из системы в атмосферу. Тормоз является прямодействующим и неистощимым, так как торможение происходит за счет подачи сжатого воздуха непосредственно из главного резервуара и имеется возможность восполнить утечки воздуха из цилиндров.

Автоматический непрямодействующий тормоз применяется на российских железных дорогах для пассажирских локомотивов и вагонов.

Автоматический непрямодействующий тормоз

По сравнению с первой схемой на каждом вагоне размещены два дополнительных прибора - воздухораспределитель 6 и запасной резервуар 8. Кран машиниста в положении зарядки и отпуска (оно теперь обозначено I) соединяет главные резервуары 2 и питательную магистраль 3 с тормозной магистралью 5, а из неё воздух поступает в воздухораспределитель 6 и запасной резервуар 8. Тормозной цилиндр 7 через канал в воздухораспределителе соединен с атмосферой. При торможении (рисунок б) кран машиниста соединяет тормозную магистраль с атмосферой. Слева от поршня воздухораспределителя падает давление, а справа на него действует давления воздуха запасного резервуара. Поршень сдвигается влево и увлекает за собой золотник, который разобщает тормозной цилиндр с атмосферой, но соединяет его с запасным резервуаром. ТЦ наполняется, тормозные колодки прижимаются к колесам. Тормоз является автоматическим, так как при любом падении давления в тормозной магистрали (открытии стоп-крана 9, разрыве магистрали - разъединении рукавов) происходит торможение без участия машиниста. Но в такой схеме тормоза нет прямодействия, поскольку во время торможения и при перекрыше главный резервуар не сообщается с тормозным цилиндром. Таким образом, этот тормоз является истощимым.

Автоматический п р я м о д е й с т в у ю щ и й тормоз применяется на всех грузовых локомотивах и вагонах, а также на пассажирском подвижном составе западноевропейских железных дорог.

Автоматический прямодействующий тормоз

На локомотиве установлены компрессор 1, главный резервуар 2, напорная (питательная) магистраль 3 и кран машиниста 4, имеющий устройство 5 для питания тормозной магистрали в положении перекрыши. Сжатый воздух, вырабатываемый компрессором, заполняет главный резервуар и далее по питательной магистрали поступает к крану машиниста. Если ручка крана машиниста установлена в положение I зарядки и отпуска, то воздух подается в тормозную магистраль 6, которая проходит вдоль локомотива и сцепленных с ним вагонов. Соединение магистралей отдельных единиц подвижного состава осуществляется гибкими рукавами 7 с концевыми кранами 8. Из тормозной магистрали сжатый воздух через воздухораспределитель 12 поступает в запасный резервуар 11. В то лес время тормозной цилиндр 13 через воздухораспределитель сообщается с атмосферой Ат. Таким образом происходит зарядка тормоза до определенного зарядного давления. При постановке ручки крана машиниста в положение II торможения происходит выпуск воздуха из магистрали 6 в атмосферу. Падение давления в магистрали вызывает срабатывание воздухораспределителя, который сообщает запасный резервуар с тормозным цилиндром. По мере повышения давления в цилиндре его поршень со штоком перемещает рычажную передачу 14, в результате чего тормозные колодки прижимаются к колесам. Когда ручка крана машиниста находится в положении III перекрыши, колеса остаются заторможенными. Возможные утечки воздуха из тормозного цилиндра не вызывают падения давления и ослабления силы нажатия колодок, так как цилиндр питается сжатым воздухом из запасного резервуара III, который пополняется из магистрали через обратный питательпый клапан 10, встроенный в воздухораспределитель. В свою очередь тормозная магистраль связана с главным резервуаром 2 через питательное устройство 5 крана машиниста.Отпуск тормоза производится переводом ручки крана машиниста в I положение. При этом происходит наполнение сжатым воздухом тормозной магистрали и запасных резервуаров, а цилиндр 13 сообщается с атмосферой, как при зарядке. Такой тормоз называется автоматическим потому, что при понижении давления сжатого воздуха в магистрали из-за открытия крана экстренного торможения (стоп-крана) 9 или разрыве поезда (разъединении рукавов 7) происходит торможение независимо от действий машиниста. Тормоз является прямодействующим, поскольку в заторможенном состоянии в положении перекрыши происходит питание всей системы сжатым воздухом прямо из главного резервуара, а также и неистощимым, так как утечки воздуха из тормозных цилиндров постоянно восполняются.

Электропневматическими называются тормоза, управляемые при помощи электрического тока, а для создания тормозной силы используется   энергия сжатого воздуха. Электропневматический тормоз  прямодействующего типа с разрядкой и без разрядки тормозной магистрали применяется на пассажирских, электро- и дизель-поездах.В этом тормозе наполнение цилиндров при торможении и выпуск воздуха из них при отпуске осуществляется независимо от изменения давления в магистрали, т. е. аналогично прямодействующему пневматическому тормозу. Автоматичность тормоза обеспечивается наличием воздухораспределителя 9.

Электропневматический тормоз

Зарядка запасного резервуара 2 происходит через воздухораспределитель 9 из тормозной магистрали 10. При торможении контроллер крана машиниста 1 замыкает соответствующие контакты, и электрический ток воздействует на электромагнитные катушки вентилей 4 и 5. Якорь 6 закрывает атмосферное отверстие А, а якорь 3 сообщает запасной резервуар 2 через клапан 8 с тормозным цилиндром 7. Давление в тормозной магистрали 10 краном машиниста   1  не  понижается,   однако он имеет положение, при котором может происходить и разрядка магистрали в атмосферу. При отпуске тормоза в контроллере крана машиниста 1 размыкаются контакты, катушки тормозного вентиля 4 и вентиля перекрыши 5 обесточиваются и воздух из тормозного цилиндра 7 выпускается в атмосферу А. При перекрыше после ступени торможения вентиль 4 обесточивается, а вентиль 5 находится под напряжением, при этом якорь 3 отсоединяет запасный резервуар 2 от тормозного цилиндра 7 и давление в нем не повышается. В случае прекращения действия электрического управления тормозом воздухораспределитель 9 работает на пневматическом управлении, как показано на схеме непрямодействующего тормоза. Электропневматические тормоза обеспечивают плавное торможение поездов и более короткие тормозные пути, что повышает безопасное движение и управляемость тормозами. Электропневматический тормоз автоматического типа с двумя магистралями (питательной и тормозной) и с разрядкой тормозной магистрали при торможении применяется на некоторых дорогах   Западной   Европы   и   США. В этих тормозах торможение осуществляется разрядкой тормозной магистрали каждого вагона через электровентили в атмосферу, а отпуск — сообщением ее через другие электровентили с дополнительной питательной магистралью. Процессами изменения давления в тормозном цилиндре при торможении и отпуске управляет обычный воздухораспределитель, как и при автоматическом пневматическом тормозе.

По характеру действия различают пневматические тормоза нежесткие, полужесткие и жесткие.

  • Нежесткие тормоза — такие, которые работают нормально при любом зарядном давлении в магистрали. При медленном снижении давления в магистрали темпом 0,03— 0,04 МПа (0,3—0,4 кгс/см2) в 1 мин и менее такие тормоза в действие не приходят, а при темпе снижения 0,01 МПа (0,1 кгс/см2) в 1 с и более срабатывают на торможение. При повышении давления в магистрали после торможения на 0,02— 0,03 МПа (0,2—0,3 кгс/см2) происходит полный отпуск без ступеней.
  • Полужесткие тормоза отличаются от нежестких только тем, что для полного отпуска требуется восстановить первоначальное зарядное предтормозное давление в магистрали или на 0,01—0,02 МПа (0,1—0,2 кгс/см2) ниже зарядного. Этот тормоз обладает свойством не только ступенчатого торможения, но и ступенчатого отпуска (горный режим отпуска).
  • Жесткие тормоза — такие, которые работают только при определенном зарядном давлении в тормозной магистрали. Эти тормоза приходят в действие при любом темпе снижения давления в магистрали и на любую величину и остаются заторможенными до тех пор, пока в магистрали сохраняется давление ниже установленного зарядного.

На железных дорогах России и СНГ тормоза жесткого типа применяют в грузовом подвижном составе, эксплуатирующемся на небольших участках, имеющих особо крутые уклоны (0,045 и более). Такие тормоза применяются с переключающим устройством, которое на равнинном профиле пути придаст тормозу свойства нежесткого, на горном профиле — полужесткого.

Анимация (мультик) по схемам прямодействующего, нпрямодействующего тормоза и ЭПТ

Отличное пособие по новому воздухораспределителю пассажирских вагонов № 242. С анимацией и дикторским сопровождением

www.pomogala.ru


Смотрите также