Вагонник. Тормозная вагонная колодка


Замена тормозных колодок ~ Вагонник

   Минимальная толщина тормозных колодок, при которой они подлежат замене (толщина предельно изношенных тормозных колодок) должна быть не менее:
  • чугунных - 12 мм;
  • композиционных с металлическим штампованным каркасом - 14 мм;
  • композиционных с сетчато-проволочным каркасом - 10 мм.
  При сверхнормативном износе тормозной колодки , тормозную колодку заменить.

  Композиционные тормозные колодки с сетчато-проволочным каркасом можно отличить от композиционных тормозных колодок с металлическим штампованным каркасом по ушку, заполненному фрикционной композиционной массой.  Толщину тормозной колодки следует проверять с наружной стороны тележки.  При клиновидном износе толщину тормозной колодки следует контролировать на расстоянии 50 мм от тонкого края колодки. В случае явного износа тормозной колодки с внутренней стороны  (со стороны гребня колеса) колодку заменить, если этот износ может вызвать повреждение башмака.

  При износе боковой поверхности тормозных колодок со стороны гребня колеса необходимо проверить состояние триангелей, траверс (у грузовых вагонов с тележками пассажирского типа), тормозных башмаков и их подвесок, тормозные колодки заменить.   Минимальная толщина вновь устанавливаемой тормозной колодки должна быть не менее 25 мм, при этом клиновидный износ не допускается.   Запрещается устанавливать композиционные тормозные колодки на вагоны, рычажная передача которых установлена под чугунные колодки (оси затяжек горизонтальных рычагов находятся в отверстиях, расположенных дальше от тормозного цилиндра), и, наоборот, не допускается ставить чугунные тормозные колодки на вагоны, рычажная передача которых установлена под композиционные колодки.   При композиционных колодках затяжка горизонтальных рычагов должна быть соединена  по отверстиям в горизонтальных рычагах, расположенных ближе к тормозному цилиндру, при чугунных колодках дальше от тормозного цилиндра.   Исключение составляют служебные и дизельные вагоны рефрижераторного подвижного состава, а также грузовые вагоны с дизельным отделением пятивагонных рефрижераторных секций, тормозная рычажная передача которых рассчитана только на чугунные колодки (горизонтальные тормозные рычаги имеют одно отверстие для соединения с затяжкой). На таких вагонах разрешается ставить композиционные тормозные колодки при обязательном условии, что воздухораспределители этих вагонов должны быть закреплены на "Порожний" режиме работы воздухораспределителя.   Вагоны с тарой от 27 т и более, в том числе шестиосные и восьмиосные вагоны, разрешается эксплуатировать только с композиционными тормозными колодками.   При замене тормозных колодок необходимо соблюдать следующие условия:
  • на одном вагоне должны быть установлены колодки одного типа и конструкции;
  • колодки на одной оси не должны различаться по толщине более чем на 10 мм.

Порядок замены тормозной колодки

При необходимости замены тормозной колодки у вагона: 1) перекрыть концевые краны с обеих сторон; 2) Для отпуска тормоза путем воздействия на цепочку выпускного клапана выпустить воздух из тормозной магистрали вагона в атмосферу; 3) После отпуска тормоза и отвода колодок от колеса извлечь чеку 1 и снять неисправную колодку; 4) установить исправную колодку ушком в предусмотренный для этой цели центральный зев башмака. Концевые направляющие бобышки колодки должны входить в направляющие пазы башмака. Закрепить колодку исправной чекой 1. Чека должна проходить через отверстия в выступах башмака и в ушке колодки. Тормозная колодка должна быть установлена так, чтобы округлая грань поверхности трения колодки была обращена к гребню колеса. На одном триангеле колодки не должны различаться по толщине более чем на 10 мм. На вагоне необходимо устанавливать колодки одного типа и конструкции. Зазор между тормозной колодкой и колесом должен быть не более 10 мм и колодка не должна выходить за наружную грань колеса более чем на 10 мм.

www.xn--80adeukqag.xn--p1ai

биметаллическая вагонная тормозная колодка - патент РФ 2381934

Изобретение относится к области железнодорожного транспорта, в частности к тормозным колодкам железнодорожного подвижного состава. Биметаллическая тормозная колодка содержит дугообразно изогнутый чугунный брус, имеющий с тыльной стороны расположенный поперечно, посередине прилив, с отверстием под клиновидную чеку для крепления в колодкодержателе. Чугунный брус выполнен литьем чугуна в форму. В теле чугунного бруса продольными рядами размещены цилиндрические вставки, выполненные из материала более высокой абразивности, чем материал бруса. Вставки размещены двумя группами и разделены участком без вставок. Вставки прикреплены точечной электросваркой к стальной пластине, покрывающей и повторяющей форму тыльной стороны бруса. Стальная пластина выполнена перфорированной круглыми отверстиями диаметром 25 мм в соответствии со схемой размещения вставок в теле бруса таким образом, чтобы напротив каждого круглого отверстия располагалось по две вставки. Торцы вставок на 1/3 перекрывают площадь круглого отверстия. Торцы вставок приваривают электросваркой к кромке круглого отверстия. При литье чугуна форму заполняют так, чтобы круглые отверстия в стальной пластине были заполнены чугуном. По концам стальной пластины выполнены четырехугольные отверстия под чугунные приливы, имеющие в сечении форму швеллера. Длина участка без вставок превышает ширину прилива. Достигается равномерный износ колодки и поверхности катания колес, исключается возникновение на поверхности колес кольцевых канавок в период эксплуатации и блокировка колес на всех режимах торможения, и обеспечивается отсутствие на поверхности катания колес прижегов, наваров и ползунов. 8 ил., 1 табл. биметаллическая вагонная тормозная колодка, патент № 2381934

Изобретение относится к железнодорожному транспорту и касается тормозного оборудования, а именно тормозных колодок железнодорожного подвижного состава. Биметаллическая вагонная тормозная колодка (далее колодка) разработана для железнодорожного подвижного состава как зарубежного, так и отечественного производства.

До настоящего времени на пассажирских, грузовых вагонах и другом подвижном составе используется несколько типов колодок различных конструкций, изготовленных из различных материалов.

Заявленная колодка разработана для замены существующих композиционных и чугунных колодок, является очередной разработкой семейства биметаллических тормозных колодок для подвижного состава железнодорожного транспорта.

Известна биметаллическая тормозная колодка по авторскому свидетельству № 1643266, Мкл. В61Н 1/00 Бюл. № 15, 23.04.91 г. Колодка содержит дугообразную отливку в виде бруса прямоугольного сечения, при этом в теле бруса со стороны рабочей трущейся поверхности выполнены, по крайней мере, два параллельных ряда вставок, ось рядов которых параллельна боковой стороне колодки, в теле закреплены цилиндрические вставки, выполненные из материала, имеющего более высокую абразивность, чем материал бруса. Вставки размещены в шахматном порядке.

Недостатком известной тормозной колодки является быстрый износ из-за распространения задира по всей поверхности колодки, что влечет за собой износ самой колодки, снижение самого эффекта при больших скоростях движения 80÷90 км/ч за счет перегрева вставок, а так же преждевременного выхода из строя при возникновении трещин чугуна между вставками.

Наиболее конструктивно близкой является биметаллическая тормозная колодка, содержащая дугообразную отливку в виде изогнутого чугунного бруса, с приливом, под клиновидную чеку. Отливка выполнена литьем чугуна в форму, в теле которой продольными рядами размещены цилиндрические вставки, выполненные из материала более высокой абразивности, чем материал бруса. Вставки размещены двумя группами, в каждой группе вставки расположены двумя параллельными рядами, группы вставок разделены участком без вставок. Вставки прикреплены точечной сваркой с стальному каркасу. Стальной каркас выполнен в виде пластины с участками, повторяющими форму дугообразно-изогнутого бруса. Стальной каркас имеет профильный участок, охватывающий прилив чугунного бруса, с отверстиями в боковой поверхности для фиксации колодки клиновой чекой в башмаке (колодкодержателе). Параллельные ряды вставок развернуты на угол биметаллическая вагонная тормозная колодка, патент № 2381934 =15÷20° в одном направлении в обеих группах. Вставки выполнены из жаростойкой стали.

Вставки закреплены на пластине каркаса точечной сваркой. Четыре крайние вставки в рядах выполнены с кольцевыми канавками на боковой поверхности.

Рабочая поверхность колодки выполнена с уклоном 1:20. Патент RU 2298500, М. кл. В61Н 1/00, F16D 65/04, F16D 69/00, публ. 10.05.2007, Бюл. № 13.

Однако эта конструкция колодки имеет недостатки, отрицательно влияющие на эксплуатационные качества колодки и достаточно высокую стоимость в производстве. Как показала практика, в колодках с их износом на 80÷85% возникает микроподвижность чугуна на кольцевых канавках вставок, вследствие чего падает теплопроводность колодки в целом и снижается коэффициент трения, увеличивая длину тормозного пути.

Кроме того, из-за неточности размещения вставок на каркасе и в теле колодки на поверхности катания колес возникают выработки в виде кольцевых канавок.

Кроме того, трудность автоматизации изготовления и сборки каркаса с вставками не даст возможности снижения себестоимости колодок в производстве.

Как показала практика, при износе 90% толщины колодки наблюдается незначительное ослабление соединения чугунного изогнутого бруса со стальным каркасом и вставками, закрепленными на каркасе, и крепление вставок точечной сваркой к каркасу недостаточно прочное.

Задачей изобретения является повышение ресурса колодок и сопряженных с ними колес, надежности работы тормозов, простоты изготовления за счет повышения прочности закрепления вставок на стальном каркасе сваркой и за счет особенностей технологии заливки чугуна при изготовлении бруса при более точном расположении вставок в теле чугунной колодки.

Поставленная задача достигается тем, что биметаллическая вагонная тормозная колодка содержит дугообразно изогнутый чугунный брус, имеющий с тыльной стороны расположенный поперечно, посередине прилив, с отверстием под клиновидную чеку для крепления в колодкодержателе, выполненный литьем чугуна в форму. В теле бруса продольными рядами размещены цилиндрические вставки, выполненные из материала более высокой абразивности, чем материал бруса. Вставки размещены двумя группами и разделены участком без вставок. Вставки прикреплены электросваркой к стальной пластине, покрывающей и повторяющей форму тыльной стороны бруса.

Стальная пластина выполнена перфорированной круглыми отверстиями диаметром 25 мм в соответствии со схемой размещения вставок в теле бруса таким образом, чтобы напротив каждого отверстия располагалось по две вставки. При этом торцы вставок на 1/3 перекрывают площадь круглого отверстия. Торцы вставок приваривают электросваркой к кромке отверстия. При литье чугуна форму заполняют так, чтобы эти отверстия в стальной пластине были заполнены чугуном. По концам стальной пластины выполнены четырехугольные отверстия под чугунные приливы, имеющие в сечении форму швеллера. Длина участка без вставок К превышает ширину прилива С и определяется по формуле

К=(1,75÷1,85)С,

где К - длина участка колодки без вставок;

С - ширина прилива.

Новизна изобретения заключается в ее конструктивных особенностях.

- Стальная пластина выполнена перфорированной круглыми отверстиями диаметром 25 мм в соответствии со схемой размещения вставок в теле бруса таким образом, чтобы напротив каждого отверстия расположить по две вставки. Вставки расположены так, чтобы их торцы на 1/3 перекрывали площадь круглого отверстия. Вставки приваривают электросваркой к кромке отверстия. Схема размещения круглых отверстий на стальной пластине в соответствии с заданными параметрами равномерного размещения рабочей поверхности вставок на рабочей поверхности колодки рассчитывается на ЭВМ и точно переносится на стальную пластину при ее перфорации. В соответствии с рассчитанной сеткой координат настраивают и электросварочный дуговой аппарат, который под слоем флюса производит приваривание вставок к стальной пластине, что упрощает изготовление и исключает ручной труд.

- При литье чугуна форму заполняют так, чтобы эти отверстия в стальной пластине были заполнены чугуном. При этом образуются мощные Т-образные зацепы чугуном за торцы вставок, что увеличивает прочность и долговечность колодки.

- По концам стальной пластины выполнены четырехугольные отверстия под чугунные приливы, имеющие в сечении форму швеллера. В углублении швеллера размещаются концы клиновой чеки при ее установке, что позволяет более точно зафиксировать положение чеки и предотвратить поворот колодки относительно ее продольной оси. Это улучшает условия работы колодки и обеспечивает равномерность износа рабочей поверхности.

- Длина участка без вставок К превышает ширину прилива С. Это позволяет повысить прочность колодки на участке крепления в башмаке.

Совокупность существенных признаков изобретения позволяет на 90% автоматизировать процесс производства колодок и добиться точного размещения вставок в теле чугунного бруса, что повышает качество полученной колодки, улучшает ее эксплуатационные свойства. Повышается прочность колодки за счет изменения технологии ее изготовления, снижается стоимость производства.

Полученная конструкция позволяет добиться равномерного износа колодки и поверхности катания колес. При этом исключается возникновение на поверхности колес кольцевых канавок в период эксплуатации и блокировка колес на всех режимах торможения в любую погоду и любое время года, обеспечивается отсутствие на поверхности катания колес прижегов, наваров и ползунов - эта колодка создает при торможениях колесосберегающий режим торможения.

Вставки выполнены из более абразивного металла или сплава, в том числе из жаростойких сталей, твердость которых не превышает 155 ед. НВ.

При расчете геометрии расположения вставок в теле чугунного бруса на ЭВМ задают ряд параметров.

Длина участка без вставок К превышает ширину прилива С и определяется по формуле

К=(1,75÷1,85)С,

где К - длина участка колодки без вставок;

С - ширина прилива.

Каждая из двух групп цилиндрических вставок содержит 8-10 вставок, каждый из рядов в группе содержит 4-5 вставок.

Рабочая поверхность тормозной колодки выполнена по профилю поверхности катания колеса с уклоном 1:20 или другим уклоном в соответствии со стандартами других стран мира.

Площадь S рабочей поверхности колодки определяется по формуле

S=(3.21÷5.46)×S2 +S1,

где S - площадь рабочей поверхности колодки;

S2 - сумма площадей рабочих поверхностей вставок;

S1 - площадь участка без вставок.

Площадь участка без вставок определяется по формуле

S1=K×B,

где S1 - площадь участка без вставок;

К - длина участка колодки без вставок;

В - ширина рабочей поверхности колодки.

Диаметр d цилиндрических вставок определяется по формуле

d=(3,0÷4,0)×В,

где d - диаметр цилиндрической вставки;

В - ширина рабочей поверхности колодки.

Длина цилиндрической вставки определяется по формуле

L=(0,95÷0,96)×Н,

где L - длина цилиндрических вставок;

Н - толщина колодки без толщины стальной перфорированной пластины.

Абразивность бруса колодки определяется по формуле

С=(0,6÷0,7)×М,

где С - абразивность бруса колодки;

М - абразивность вставки.

Все цилиндрические вставки размещают в кондукторе по геометрической схеме, рассчитанной на ЭВМ, напротив круглых отверстий перфорированной стальной пластины попарно и приваривают к стальной пластине электросварочным автоматом под флюсом с тыльной стороны стальной пластины. Пакет вставок вместе со стальной пластиной укладывают в литейную форму и заливают расплавом чугуна так, чтобы круглые отверстия были заполнены чугуном, при этом образуются мощные Т-образные зацепы чугуном за торцы вставок. С рабочей поверхности колодки все вставки залиты 3÷4 мм слоем чугуна, т.е. закрыты, кроме четырех крайних установочных в литейной форме.

Конструктивные особенности колодки позволяют на 90% автоматизировать ее производство, улучшить ее эксплуатационные качества и снизить стоимость производства.

Стальные вставки и Т-образные заливы чугуна в отверстия перфорации стальной пластины обеспечивают лучший теплоотвод и поэтому, как показала практика, колодка не теряет коэффициент трения при торможениях на высоких скоростях движения 90÷140 км/ч.

Высокие механические свойства, превосходящие свойства биметаллических и чугунных колодок раннего производства, позволяют эксплуатировать ее до износа, составляющего 0,12 первоначальной толщины.

В целом колодка, обладая хорошей теплопроводностью и теплоемкостью, обеспечивает упруго-пластическое трение при температуре колодок до 750°, увеличивая срок службы колодок и поверхности катания колес.

В тормозной колодке ее задняя установочная часть выполнена в виде стальной пластины с участками, повторяющими форму дугообразно изогнутого бруса и расположенного в средней части профильного участка в виде прилива с отверстиями в боковой поверхности для фиксации колодки клиновой чекой или другим способом в соответствии со стандартами любой страны мира.

В стальной перфорированной пластине по концам выполнены четырехугольные отверстия под чугунные приливы, имеющие в сечение форму швеллера. При установке колодки и закреплении ее чекой концы чеки располагаются внутри швеллера, что предотвращает поворот колодки относительно ее продольной оси.

На стальной перфорированной пластине размещены и закреплены через отверстия с тыльной стороны электросварочным автоматом под флюсом стальные вставки, расположенные по геометрической схеме, рассчитанной на ЭВМ. После такой компоновки стальная перфорированная пластина с приваренными к ней стальными вставками укладывается в литейную форму и заливается расплавом чугуна, химический состав которого указан в таблице, или чугуном иного химического состава.

ТаблицаСостав чугуна.
ГруппаС SiMn PS
C1 2,8-3,40,7-1,1 0,4-1,1 0,4-0,9не более 0,2
Ф 2,8-3,5 1,3-2,00,3-0,9 1,0-1,5 не более 0,15

Расплав чугуна заполняет форму, в том числе и отверстия в стальной пластине, через которые приварены вставки, образуя в этом соединении мощные Т-образные шипы, на две вставки - один шип. Эти шипы в совокупности с приливом с тыльной стороны колодки посредине изогнутого бруса и вставок обеспечивают хорошее соединение чугуна бруса со стальной пластиной тыльной стороны колодки и мощный отвод тепла от рабочей поверхности колеса, сберегая его от резких термовоздействий с соответствующими отрицательными последствиями - развитием микротрещин.

Режим работы колодки со своевременным и качественным отводом тепла от места рабочего контакта пары трения колодка-колесо обеспечивает более надежное торможение с большим коэффициентом трения и в совокупности с предотвращением появления микротрещин на рабочей поверхности колес, а также полное отсутствие блокировки колес на любых режимах торможения являются колесосберегающими, не допускающими повреждений поверхности катания колес: ползуны, навары, пригары, термические трещины, выщербины и т.д.

Рабочая часть колодки выполнена с уклоном 1:20 или иным в соответствии со стандартами других стран мира, позволяющая увеличить рабочую поверхность вставок, так как она при работе колодки принимает форму эллипса, что способствует повышению ресурса колодки.

Вставки выполнены из пластичного металла или сплава с твердостью не более 155 ед. НВ и их крепление к стальной перфорированной пластине электросваркой, как показала практика, обеспечивают надежное крепление вставок и хороший теплоотвод от рабочей поверхности колодки.

Расчет длины цилиндрической вставки в зависимости от толщины колодки позволяет при изготовлении колодки создать возможность для заливки их чугуном на высоту 3÷4 мм с рабочей стороны, что дает возможность при первых же торможениях обеспечить истирание этого слоя чугуна и приработку тела колодки вместе со вставками по поверхности катания колеса, обеспечивая качественный тормозной эффект с первых циклов торможения, учитывая, что практически вследствие различного износа и разного количества проточек колес из-за их повреждений все колеса имеют различные радиусы поверхности катания и требуют индивидуальной приработки колодок каждой к своему колесу. Вопрос быстрой приработки колодок и начального качества торможения в этом случае решен за счет того, что все вставки закрыты 3÷4 мм слоем чугуна.

Вставки имеют более высокую абразивность, чем тело колодки.

Установочные и габаритные размеры колодки, а также прилив с тыльной стороны для крепления в башмаке клиновой чекой или другим способом могут быть выполнены по стандартам любой страны мира.

Ресурс заявленной унифицированной биметаллической тормозной колодки превышает ресурсы существующих биметаллических тормозных колодок на 5÷8%, а чугунных в десятки раз. По экологическим нормам колодка значительно превосходит как в производстве, так и в эксплуатации любые композиционные колодки и является совершенно безвредной.

По своим механическим характеристикам заявленная колодка значительно превосходит прототип и другие биметаллические колодки за счет надежного соединения чугунного бруса тела колодки со стальными вставками и стальной пластиной за счет залива чугуна в отверстия.

Изобретение поясняется чертежами, представленными на Фиг.1-8.

На фиг.1 показан общий вид колодки с разрезом, идущим через ряд вставок. Слой чугуна, закрывающий торцы вставок со стороны рабочей поверхности, условно не показан.

На фиг.2 показан общий вид колодки.

На фиг.3 - вид колодки в разрезе по А-А.

На фиг.4 - размещение вставок напротив отверстия пластины.

На фиг.5 - вид стальной перфорированной стальной пластины со стороны рабочей поверхности колодки.

На фиг.6 - вид стальной перфорированной пластины с тыльной стороны колодки.

На фиг.7 - цилиндрическая вставка.

На фиг.8 - клиновая чека.

Биметаллическая вагонная тормозная колодка содержит дугообразно изогнутый чугунный брус 1 и стальную перфорированную пластину 2 с круглыми отверстиями 3 диаметром 25 мм. Отверстия 3 размещены в соответствии со схемой размещения вставок в теле бруса 1. При заливке чугуна в отверстия 3 получаются Т-образные заливы чугуна 4. Стальная пластина 2 имеет отверстие 5 под клиновидную чеку. По концам стальной пластины 2 выполнены четырехугольные отверстия 6 под чугунные приливы, имеющие в сечении форму швеллера 7. Цилиндрические вставки 8 размещены продольными рядами в теле чугунного бруса 1.

Брус 1 имеет расположенный поперечно, посередине прилив 9 с отверстием 5 для клиновой чеки 10 для крепления в колодкодержателе.

Торцы двух вставок 8 на 1/3 перекрывают площадь круглого отверстия 3, торцы вставок приваривают электросваркой к кромке отверстия 3.

Вставки 8 размещены двумя группами и разделены участком без вставок.

Длина участка без вставок К превышает ширину прилива С и определяется по формуле.

На стальной перфорированной пластине 2 выполнены следующие отверстия Фиг.2:

- от 8 до 10 отверстий 3 для приварки вставок 8 к пластине 2 с образованием Т-образного залива 4 чугуна в это отверстие 3,

- отверстия 5 под клиновую чеку 10,

- отверстия 6 под концевые чугунные приливы 7 опоры клиновой чеки 10 или иного способа крепления, выполненные под стандарты любой страны мира.

На фиг.3 в теле чугунного бруса 1 размещены цилиндрические вставки 8, выполненные из различных металлов или их сплавов и приваренные электросварочным автоматом к кромкам технологических отверстий 3 в каркасе 2 не менее двух вставок 8 в одном отверстии. Залитый в это отверстие чугун при заливке каркаса образует грибообразную (в сечении Т-образную) отливку 4, надежно соединяющую тело колодки 1 с каркасом 2.

На фиг.4 вставки 8 закреплены электросварочным автоматом к каркасу 2 через технологические отверстия 3 по геометрической схеме, рассчитанной на ЭВМ. По этой же схеме настроен электросварочный автомат. Количество вставок на всю колодку - 16÷20 штук в зависимости от скоростной характеристики колодки, ее длины и ширины, диаметра и материала вставок.

Тормозная колодка выполнена литьем чугуна в литейную форму с предварительно уложенной стальной перфорированной пластиной 2, на которой закреплены электросваркой вставки 8. Весь пакет заливается расплавом чугуна, образуя изогнутый брус 1 с приливом 9 с тыльной стороны посередине или приливом иной конфигурации в соответствии со стандартом любой страны для крепления колодки в колодкодержателе через отверстия 5 клиновой чекой 10, пальцем или иным креплением.

Вставки 8 выполнены из металла с абразивностью выше абразивности тела чугунного бруса 1.

Работа унифицированной тормозной колодки обеспечивается нажатием колодки к поверхности катания колеса, при этом возникает взаимодействие трущейся пары колодка - колесо, в этом случае возникает упругопластическое трение с коэффициентом трения 0,48÷0,50, условия возникновения этого трения:

1. тело колодки - чугун групп С 1, Ф и другие чугуны, твердость 197÷255 ед.НВ.

2. вставки мягкие из различных металлов и их сплавов, твердость не более 155 ед.НВ.

3. поверхность катания колеса, твердость 235÷340 ед. НВ.

4. предельная термостойкость колодки не ниже 750°С.

Производство предлагаемой колодки предполагает более высокий коэффициент автоматизации производства, следовательно, более низкую себестоимость. Предлагаемое техническое решение устройства и изготовления колодки позволяет получить более качественную и с большим ресурсом работы колодку. При ее использовании не происходит блокировки колес, а следовательно, и повреждений, связанных с этим явлением. Кроме того, сама конструкционная прочность колодки за счет более механически прочного соединения перфорированной стальной пластины с чугунным изогнутым брусом колодки и вставками обеспечивает ее высокую надежность и работу без разрушений на всех режимах торможения подвижного состава.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Биметаллическая вагонная тормозная колодка содержит дугообразно изогнутый чугунный брус, имеющий с тыльной стороны расположенный поперечно посередине прилив с отверстием под клиновидную чеку для крепления в колодкодержателе, выполненный литьем чугуна в форму, в теле которого продольными рядами размещены цилиндрические вставки, выполненные из материала более высокой абразивности, чем материал бруса, вставки размещены двумя группами и разделены участком без вставок, вставки прикреплены точечной электросваркой к стальной пластине, покрывающей и повторяющей форму тыльной стороны бруса, отличающаяся тем, что стальная пластина выполнена перфорированной круглыми отверстиями диаметром 25 мм в соответствии со схемой размещения вставок в теле бруса таким образом, чтобы напротив каждого круглого отверстия располагалось по две вставки, при этом торцы вставок на 1/3 перекрывают площадь круглого отверстия, торцы вставок приваривают электросваркой к кромке круглого отверстия, при литье чугуна форму заполняют так, чтобы эти круглые отверстия в стальной пластине были заполнены чугуном, по концам стальной пластины выполнены четырехугольные отверстия под чугунные приливы, имеющие в сечении форму швеллера, длина участка без вставок К превышает ширину прилива С и определяется по формулеК=(1,75÷1,85)С,где К - длина участка колодки без вставок;С - ширина прилива.

www.freepatent.ru

КОЛОДКА ВАГОННАЯ ТОРМОЗНАЯ КОМПОЗИЦИОННАЯ НА ОСНОВЕ ЖЕЛЕЗА

Изобретение относится к железнодорожному транспорту, в частности к тормозному оборудованию подвижного состава, а также может использоваться в тормозных системах на других видах транспорта.

Известна тормозная колодка по авт.св. 1572889, B61H 1/00, публ. 23.06.90, содержащая стальной каркас, чугунное дугообразное тело, состоящее из основного и профильного участков с выполненным в нем ручьем и снабженное вставками, заложенными рядами в тело колодки со стороны рабочей трущейся поверхности, причем гребневые вставки профильного участка выполнены в виде цилиндрических элементов с продольным вырезом и установлены в ручье колодки с возможностью схватывания и взаимодействия с гребнем бандажа колеса.

Однако в известном техническом решении вставки выполнены из специального чугуна, обладающего высокой твердостью, и вследствие этого вызывают интенсивный износ поверхности колес. Кроме того, выполнение вставок основного участка призматическими, с непрерывной поверхностью трения, ухудшает теплоотвод и способствует еще большему износу пар трения и снижению тормозного усилия из-за уменьшения коэффициента трения.

Известна тормозная колодка, содержащая стальной каркас, дугообразное тело, состоящее из основного участка тела колодки и профильного участка тела колодки с выполненным в нем ручьем. В тело колодки со стороны рабочей трущейся поверхности на профильном участке заложен один ряд гребневых вставок, выполненных в виде цилиндрических элементов с продольным вырезом, охватывающих гребень бандажа колеса. На основном участке заложены рядами по крайней мере две группы вставок цилиндрической формы. В каждой из групп центры трех ближайших вставок равноудалены друг от друга, а ряды этих вставок развернуты относительно продольной оси колодки. Вставки выполнены из пластичного металла, например из стали. Патент RU №2153994.

Недостатком известной тормозной колодки является снижение тормозного эффекта при нагреве колодки, за счет перегрева вставок снижается коэффициента трения. Колодка создает шум при работе.

Известна тормозная вагонная композиционная колодка, содержащая стальной каркас, дугообразное тело, состоящее из основного участка тела колодки и бокового участка тела колодки, находящейся в контакте с гребневой поверхностью колеса, взаимодействующего с боковой поверхностью рельса, при этом дугообразное тело колодки состоит их отдельных элементов, закрепленных на стальном каркасе, причем элементы, образующие основной участок тела колодки, выполнены из фрикционного материала, а элементы, образующие боковой участок тела колодки, выполнены из антифрикционного материала в виде профильных элементов, находящихся в контакте с гребневой поверхностью колеса, взаимодействующего с боковой поверхностью рельса, фрикционный материал имеет в 1,5-10 раз больший коэффициент трения и в 1,5-3,5 большую абразивную стойкость, чем у антифрикционного материала, фрикционные элементы, образующие основной участок тела колодки, имеют различную высоту, фрикционные элементы с большей высотой расположены на краях стального каркаса. Кроме этого, фрикционные элементы, образующие основной и боковой участки тела колодки, закреплены сваркой на металлическом каркасе и между собой металлургическим способом, фрикционные элементы основного участка тела колодки выполнены из композиционного фрикционного материала, работающего при температуре до 850°C, фрикционных элементов основного участка колодки как минимум двух (RU 125950).

Данное техническое решение принято в качестве прототипа.

Недостатком известной тормозной колодки является отсутствие очищающего эффекта тормозной колодки в процессе контакта колеса с колодкой, не определены геометрические и механические параметры элементов с максимальной износостойкостью тормозной колодки.

Задачей заявляемого технического решения является повышение безопасности движения железнодорожных вагонов.

В процессе решения поставленной задачи достигается технический результат, заключающийся в устранении дефектного слоя, образующегося на поверхности катания вагонного колеса, улучшении теплоотвода из зоны контакта колодки и колеса, повышении износостойкости тормозной колодки, повышении технологичности изготовления колодки, снижении периода приработки в системе «колесо - тормозная колодка».

Технический результат достигается колодкой вагонной тормозной композиционной на основе железа, содержащей стальной каркас, имеющий скобу и направляющие, приваренные к наружной поверхности, дугообразное тело, состоящее их отдельных фрикционных элементов, закрепленных на стальном каркасе, элементы выполнены из фрикционного материала, методом порошковой металлургии, работающего при температуре не выше 850°С, при этом направляющие и стальной каркас имеют прижимные пластины, которые удерживают фрикционные элементы на стальном каркасе, фрикционный элемент колодки выполнен в форме призматоида, основания которого имеют форму трапеции, в основаниях имеются впадины, куда входят прижимные пластины стального каркаса, одна из боковых поверхностей фрикционного элемента расположена перпендикулярно основаниям и прижата к стальному каркасу, противоположная поверхность, контактирующая с поверхностью катания колеса, имеет уклон 1:20 и сопрягается с одним из оснований по радиусу не более 20 мм, две другие боковые поверхности расположены под углом 2°-7° друг к другу, на одной из них имеется выступ, на другой впадина, выступ и впадина выполнены на границе, с основанием прижатой к каркасу, при сборке колодки выступ входит во впадину, при этом высота выступа больше глубины впадины, механически фиксируя соседние фрикционных элементов между собой с зазором, образуя дугообразное тело колодки, вставленные в стальной каркас фрикционные элементы закреплены путем обжима боковых прижимных пластин каркаса, два крайних дополнительно прижаты прижимными пластинами направляющих каркаса, фрикционный элемент колодки выполнены из материала на основе железа, содержащего по массе %: медь -9-16, углерод-0,5-3,0, окись алюминия -2-4, хром-0,5-1,5, молибден -0,1-0,2, фосфор -0,01-3.0, имеющего твердость по Бринелю (80-120) HB5/125/10, микротвердость основы (230-250)HV50, состоящей из пластинчатого перлита с медными прослойками по границам зерен и микротвердость включений (700-900)HV50, состоящих из карбидных соединений молибдена и хрома, и абразивную стойкость, превышающую абразивную стойкостью колеса. Кроме этого, фрикционные элементы соединены между собой с зазором 0,5-3,0 мм, прижимные пластины имеют Г-образную форму, основания призматоида расположены параллельно плоскости вращения колеса, прижимные пластины боковых стенок расположены под углом к спинке каркаса 45°-60° и образуют в поперечном сечении паз трапецеидальной формы, на боковых поверхностях, расположенных под углом 2°-7° друг к другу, выступы и впадины имеют прямоугольную или трапецеидальную форму, прижимные пластины каркаса и впадины V-образной формы на основаниях образуют соединение типа «ласточкин хвост».

Влияние колодки сказывается не только на разрушении контактных поверхностей в системе «тормозная колодка-колесо», но и системе в «колесо-рельс». Колесо подвергается износу как со стороны тормозной колодки, так и со стороны рельса. Авторами предлагаемого технического решения были проведены исследования поверхности катания железнодорожного колеса вагона, находящегося в контакте с тормозными колодками, изготовленными из чугуна. Изучен механизм образования микротрещин на различных участках контактной поверхности колеса. Дефекты в виде трещин и выщерблин, с максимальной глубиной проникновения до 1,5 мм ускоряют не только износ колеса, но и рельса. Появление таких дефектов обусловлено высоким контактным давлением. При дальнейшем развитии трещин происходит их отслаивание (отрыв) участков поверхности колеса в виде отдельных твердых частиц. Они в дальнейшем работают как абразивные частицы, приводящие к интенсивному износу как поверхности колеса, так и поверхности катания рельса. Образование абразивных частиц происходит в несколько стадий. Это зарождение микротрещин, которое происходит постепенно в результате усталостных явлений. Микротрещины начинают развиваться задолго до того, как произойдет образование абразивных частиц и их отделение от поверхности. Длительность процесса накопления дефектов материала колеса занимает значительную часть, доходя до 90% времени процесса разрушения. Чтобы не доводить до появления на контактной поверхности (поверхность катания) колеса абразивных частиц, данная поверхность должна постоянно подвергаться очистке от загрязнения и удалению поверхностного дефектного слоя. Такое удаление происходит в процессе торможения заявляемой тормозной колодкой, имеющей более высокую абразивную стойкость по сравнению с материалом обода колеса вагона. Кроме этого, тормозная колодка должна обладать рядом физических свойств, способных выполнить задачу по очистке поверхности катания вагонного колеса. К таким свойствам в первую очередь относятся твердость материала колодки и микротвердость отдельных компонентов материала. Колодка, выполненная на основе железа с добавлением карбидообразующих элементов, например хрома, молибдена и свободного графита, фосфора, которые в процессе спекания образуют материал с таким соотношением свойств по твердости и микротвердости, фиг.3. Образование медных прослоек, фиг.3, значительно улучшает теплопроводность колодки, что приводит к снижению температуры в зоне контакта, тем самым колодка более эффективно тормозит при более высоких скоростях движения состава при сохранении высокого коэффициента трения, т.е повышается ее износостойкость. Изготовление фрикционных элементов колодки на основе железа методом порошковой металлургии, состоящих из отдельных элементов, позволяет достичь указанных свойств выполнением их из материала на основе железа, содержащего по массе %: медь - 9-16, углерод - 0,5-3,0, окись алюминия - 2-4, хром - 0,5-1,5, молибден - 0,1-0,2, фосфор - 0,01-3.0, имеющего твердость по Бринелю (80-120) HB5/125/10, микротвердость основы (230 - 250)HV50, состоящей из пластинчатого перлита с медными прослойками по границам зерен, и микротвердость включений (700-900)HV50, состоящих из карбидных соединений молибдена и хрома, и абразивную стойкость, превышающую абразивную стойкостью колеса вагона.

Кроме этого, авторами предлагаемого технического решения предложено выполнение фрикционных элементов колодки в форме призматоидов. Призматоид, м. - Многогранник, у которого две грани (основания) лежат в параллельных плоскостях, а остальные (боковые) являются трапециями или треугольниками, имеющими с основаниями общую сторону или вершину (см. А.М.Микишина, В.Б.Орлов. Толковый математический словарь. Основные термины: около 2500 терминов. - М.: Рус.яз., 1989. - 244 с., 186 ил. - С.103, рис.73). Призматоиды с основаниями в форме трапеций, расположены параллельно плоскости вращения колеса, одна из боковых граней расположена перпендикулярно основаниям и прижата к стальному каркасу, противоположная боковая грань контактирует с поверхностью катания колеса, имеет уклон 1:20, со стороны выкружки реборды колеса сопрягается с одним из оснований по радиусу не более 20 мм, оставшиеся две боковые грани расположены под углом 2°-7° друг к другу, на одной из них имеется выступ, на другой впадина, выступ и впадина выполнены на границе, с основанием прижатой к каркасу, при сборке колодки выступ входит во впадину, но при этом высота выступа больше глубины впадины, механически фиксируя соседние фрикционных элементов между собой с гарантированным зазором, образуя дугообразное тело колодки. Кроме этого, фиксация фрикционных элементов между собой с гарантированным зазором 0,5-3,0 мм позволяет значительно улучшить теплоотвод из зоны контакта колодки и колеса, и способствует удалению с контактной поверхности (поверхность катания) колеса абразивных частиц, постоянно подвергая очистке от загрязнения и удалению поверхностного дефектного слоя данную поверхность, тем самым препятствуя прежевременному разрушении контактных поверхностей в системе «тормозная колодка-колесо», системе в «колесо-рельс». Путем обжима упругих зажимов Г-образной формы стального каркаса, расположенных под углом к спинке каркаса 45°-60° образуя в поперечном сечении паз трапецеидальной формы, входя в впадины V-образной формы, расположенные в основаниях фрикционных элементов, образуя соединение типа «ласточкин хвост», дополнительное фиксирование двух крайних элементов путем обжима прижимными пластинами направляющих каркаса позволяет надежно закрепить дугообразное тело колодки из отдельных фрикционных элементов на стальном каркасе. В тормозной колодке на стальной каркасе сваркой закреплены направляющие и скоба для фиксации, позволяющие фиксировать колодки клиновой чекой или другим способом в соответствии со стандартами любой страны мира. При установке колодки и закреплении ее чекой концы чеки располагаются внутри башмака, что предотвращает поворот колодки относительно ее продольной оси. Кроме того, сама конструкционная прочность колодки за счет механически прочного соединения стального каркаса с дугообразным телом колодки из отдельных фрикционных элементов и механическая и металлургическая фиксация элементов друг с другом обеспечивают ее высокую надежность и работу без разрушений на всех режимах торможения подвижного состава.

Предлагаемое техническое решение поясняется чертежами, где на фиг.1 показаны общий вид колодки вагонной тормозной композиционной на основе железа, на фиг.2 - фрикционный элемент колодки, на фиг.3 - микроструктура материала фрикционного элемента колодки.

Тормозная вагонная композиционная колодка, содержит стальной каркас 1, с прижимными пластинами 1.1, направляющие 1.2, скобу 1.3, скоба 1.3 и направляющие 1.2 закреплены сваркой на стальном каркасе 1, дугообразное тело 2, состоящее из отдельных фрикционных элементов 3, которые закреплены на стальном каркасе 1 с помощью прижимных пластин 1.1. Фрикционный элемент колодки 3 выполнен в форме призматоида, основания 3.1 которого имеют форму трапеции, в основаниях имеются впадины 3.1.1, куда входят прижимные пластины 1.1 стального каркаса 1. Боковая поверхность 3.2 фрикционного элемента 3 расположена перпендикулярно основаниям 3.1 и прижата к стальному каркасу 1, противоположная поверхность 3.3, контактирующая с поверхностью катания колеса, имеет уклон 1:20, и сопрягается с одним из оснований по радиусу не более 20 мм. Две другие боковые поверхности 3.4 и 3.5 расположены под углом 2°-7° друг к другу, на одной из них имеется выступ 3.5.1, на другой впадина 3.5.2 (не показана), выступ и впадины выполнены на границе, с основанием, прижатой к каркасу. При сборке колодки, выступ 3.5.1 входит во впадину 3.5.2, при этом высота выступа больше глубины впадины, механически фиксируя соседние фрикционные элементы 3 между собой с зазором, образуя дугообразное тело 2 колодки, закрепленное путем обжима боковых прижимных пластин 1.1, стальной каркас 1, два крайних элемента дополнительно прижаты прижимными пластинами 1.1

Фрикционные элементы 3 выполнены из материала на основе железа, имеющего твердость по Бринелю (80-120) НВ5/125/10, микротвердость основы (230-250)HV50, состоящей из пластинчатого перлита 4.1 с медными прослойками 4.2 по границам зерен, и микротвердость включений (700-900)HV50, состоящих из карбидных соединений 4.3 молибдена и хрома. Допускается присутствие в материале свободного углерода 4.4.

Работа тормозной колодки происходит следующим образом. При прижатии рабочей поверхности колодки к рабочей поверхности колеса железнодорожного вагона происходит торможение и очищение поверхности катания колеса вагона.

Производство предлагаемой колодки предполагает более высокий коэффициент автоматизации производства, следовательно, более низкую себестоимость и повышение технологичности изготовления колодки. А такие особенности металлокерамических колодок, как низкий износ и возможность применения на скоростях свыше 140 км/ч, а также минимальный износ колеса, сопрягаемого с такой колодкой, позволят оправдать высокую стоимость металлокерамической колодки снижением затрат не только на ее замену, но и на обточку колеса, взаимодействующего с ней. В целом предлагаемое техническое решение устройства и изготовления колодки позволяет получить более качественную и с большим ресурсом работы вагонную колодку и повысить безопасность железнодорожного движения.

КОЛОДКА ВАГОННАЯ ТОРМОЗНАЯ КОМПОЗИЦИОННАЯ НА ОСНОВЕ ЖЕЛЕЗАКОЛОДКА ВАГОННАЯ ТОРМОЗНАЯ КОМПОЗИЦИОННАЯ НА ОСНОВЕ ЖЕЛЕЗАКОЛОДКА ВАГОННАЯ ТОРМОЗНАЯ КОМПОЗИЦИОННАЯ НА ОСНОВЕ ЖЕЛЕЗА

edrid.ru


Смотрите также